Biased permutative equivariant categories
Homology, homotopy, and applications, Tome 23 (2021) no. 1, pp. 77-100.

Voir la notice de l'article provenant de la source International Press of Boston

For a finite group $G$, we introduce the complete suboperad $\mathcal{Q}_G$ of the categorical $G$-Barratt–Eccles operad $\mathcal{P}_G$. We prove that $\mathcal{P}_G$ is not finitely generated, but $\mathcal{Q}_G$ is finitely generated and is a genuine $E_\infty$ $G$-operad (i.e., it is $N_\infty$ and includes all norms). For $G$ cyclic of order $2$ or $3$, we determine presentations of the object operad of $\mathcal{Q}_G$ and conclude with a discussion of algebras over $\mathcal{Q}_G$, which we call biased permutative equivariant categories.
DOI : 10.4310/HHA.2021.v23.n1.a6
Classification : 18D10, 18D50, 55P48, 55P91
Keywords: equivariant symmetric monoidal category, operad
@article{HHA_2021_23_1_a5,
     author = {Kayleigh Bangs and Skye Binegar and Young Kim and Kyle Ormsby and Ang\'elica M. Osorno and David Tamas-Parris and Livia Xu},
     title = {Biased permutative equivariant categories},
     journal = {Homology, homotopy, and applications},
     pages = {77--100},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2021},
     doi = {10.4310/HHA.2021.v23.n1.a6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n1.a6/}
}
TY  - JOUR
AU  - Kayleigh Bangs
AU  - Skye Binegar
AU  - Young Kim
AU  - Kyle Ormsby
AU  - Angélica M. Osorno
AU  - David Tamas-Parris
AU  - Livia Xu
TI  - Biased permutative equivariant categories
JO  - Homology, homotopy, and applications
PY  - 2021
SP  - 77
EP  - 100
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n1.a6/
DO  - 10.4310/HHA.2021.v23.n1.a6
LA  - en
ID  - HHA_2021_23_1_a5
ER  - 
%0 Journal Article
%A Kayleigh Bangs
%A Skye Binegar
%A Young Kim
%A Kyle Ormsby
%A Angélica M. Osorno
%A David Tamas-Parris
%A Livia Xu
%T Biased permutative equivariant categories
%J Homology, homotopy, and applications
%D 2021
%P 77-100
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n1.a6/
%R 10.4310/HHA.2021.v23.n1.a6
%G en
%F HHA_2021_23_1_a5
Kayleigh Bangs; Skye Binegar; Young Kim; Kyle Ormsby; Angélica M. Osorno; David Tamas-Parris; Livia Xu. Biased permutative equivariant categories. Homology, homotopy, and applications, Tome 23 (2021) no. 1, pp. 77-100. doi : 10.4310/HHA.2021.v23.n1.a6. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n1.a6/

Cité par Sources :