The equivariant fundamental groupoid as an orbifold invariant
Homology, homotopy, and applications, Tome 23 (2021) no. 1, pp. 25-47.

Voir la notice de l'article provenant de la source International Press of Boston

We construct a $2$-category version of Tom Dieck’s equivariant fundamental groupoid for representable orbifolds and show that the discrete fundamental groupoid is Morita invariant; hence it is an orbifold invariant for representable orbifolds.
DOI : 10.4310/HHA.2021.v23.n1.a3
Classification : 18E15, 55Q91, 57R18
Keywords: equivariant homotopy theory, orbifold, fundamental groupoid, groupoid, Morita invariance
@article{HHA_2021_23_1_a2,
     author = {Dorette Pronk and Laura Scull},
     title = {The equivariant fundamental groupoid as an orbifold invariant},
     journal = {Homology, homotopy, and applications},
     pages = {25--47},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2021},
     doi = {10.4310/HHA.2021.v23.n1.a3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n1.a3/}
}
TY  - JOUR
AU  - Dorette Pronk
AU  - Laura Scull
TI  - The equivariant fundamental groupoid as an orbifold invariant
JO  - Homology, homotopy, and applications
PY  - 2021
SP  - 25
EP  - 47
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n1.a3/
DO  - 10.4310/HHA.2021.v23.n1.a3
LA  - en
ID  - HHA_2021_23_1_a2
ER  - 
%0 Journal Article
%A Dorette Pronk
%A Laura Scull
%T The equivariant fundamental groupoid as an orbifold invariant
%J Homology, homotopy, and applications
%D 2021
%P 25-47
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n1.a3/
%R 10.4310/HHA.2021.v23.n1.a3
%G en
%F HHA_2021_23_1_a2
Dorette Pronk; Laura Scull. The equivariant fundamental groupoid as an orbifold invariant. Homology, homotopy, and applications, Tome 23 (2021) no. 1, pp. 25-47. doi : 10.4310/HHA.2021.v23.n1.a3. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n1.a3/

Cité par Sources :