The operad that co-represents enrichment
Homology, homotopy, and applications, Tome 23 (2021) no. 1, pp. 387-401.

Voir la notice de l'article provenant de la source International Press of Boston

I show that the theories of enrichment in a monoidal infinity-category defined by Hinich and by Gepner–Haugseng agree, and that the identification is unique. Among other things, this makes the Yoneda lemma available in the latter model.
DOI : 10.4310/HHA.2021.v23.n1.a20
Keywords: enriched higher category, planar operad, simplicial multicategory
@article{HHA_2021_23_1_a19,
     author = {Andrew W. Macpherson},
     title = {The operad that co-represents enrichment},
     journal = {Homology, homotopy, and applications},
     pages = {387--401},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2021},
     doi = {10.4310/HHA.2021.v23.n1.a20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n1.a20/}
}
TY  - JOUR
AU  - Andrew W. Macpherson
TI  - The operad that co-represents enrichment
JO  - Homology, homotopy, and applications
PY  - 2021
SP  - 387
EP  - 401
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n1.a20/
DO  - 10.4310/HHA.2021.v23.n1.a20
LA  - en
ID  - HHA_2021_23_1_a19
ER  - 
%0 Journal Article
%A Andrew W. Macpherson
%T The operad that co-represents enrichment
%J Homology, homotopy, and applications
%D 2021
%P 387-401
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n1.a20/
%R 10.4310/HHA.2021.v23.n1.a20
%G en
%F HHA_2021_23_1_a19
Andrew W. Macpherson. The operad that co-represents enrichment. Homology, homotopy, and applications, Tome 23 (2021) no. 1, pp. 387-401. doi : 10.4310/HHA.2021.v23.n1.a20. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n1.a20/

Cité par Sources :