The trace of the local $\mathbb{A}^1$-degree
Homology, homotopy, and applications, Tome 23 (2021) no. 1, pp. 243-255.

Voir la notice de l'article provenant de la source International Press of Boston

We prove that the local $\mathbb{A}^1$-degree of a polynomial function at an isolated zero with finite separable residue field is given by the trace of the local $\mathbb{A}^1$-degree over the residue field. This fact was originally suggested by Morel’s work on motivic transfers, and by Kass and Wickelgren’s work on the Scheja–Storch bilinear form. As a corollary, we generalize a result of Kass and Wickelgren relating the Scheja–Storch form and the local $\mathbb{A}^1$-degree.
DOI : 10.4310/HHA.2021.v23.n1.a13
Classification : 14F42, 55M25, 55P42
Keywords: motivic, homotopy, enumerative, geometry, trace, degree
@article{HHA_2021_23_1_a12,
     author = {Thomas Brazelton and Robert Burklund and Stephen McKean and Michael Montoro and Morgan Opie},
     title = {The trace of the local $\mathbb{A}^1$-degree},
     journal = {Homology, homotopy, and applications},
     pages = {243--255},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2021},
     doi = {10.4310/HHA.2021.v23.n1.a13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n1.a13/}
}
TY  - JOUR
AU  - Thomas Brazelton
AU  - Robert Burklund
AU  - Stephen McKean
AU  - Michael Montoro
AU  - Morgan Opie
TI  - The trace of the local $\mathbb{A}^1$-degree
JO  - Homology, homotopy, and applications
PY  - 2021
SP  - 243
EP  - 255
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n1.a13/
DO  - 10.4310/HHA.2021.v23.n1.a13
LA  - en
ID  - HHA_2021_23_1_a12
ER  - 
%0 Journal Article
%A Thomas Brazelton
%A Robert Burklund
%A Stephen McKean
%A Michael Montoro
%A Morgan Opie
%T The trace of the local $\mathbb{A}^1$-degree
%J Homology, homotopy, and applications
%D 2021
%P 243-255
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n1.a13/
%R 10.4310/HHA.2021.v23.n1.a13
%G en
%F HHA_2021_23_1_a12
Thomas Brazelton; Robert Burklund; Stephen McKean; Michael Montoro; Morgan Opie. The trace of the local $\mathbb{A}^1$-degree. Homology, homotopy, and applications, Tome 23 (2021) no. 1, pp. 243-255. doi : 10.4310/HHA.2021.v23.n1.a13. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n1.a13/

Cité par Sources :