Mapping algebras and the Adams spectral sequence
Homology, homotopy, and applications, Tome 23 (2021) no. 1, pp. 219-242.

Voir la notice de l'article provenant de la source International Press of Boston

For a suitable ring spectrum, such as $\mathbf{E}=\mathbf{H}\mathbb{F}_p$, the $E_2$-term of the $\mathbf{E}$-based Adams spectral sequence for a spectrum $\mathbf{Y}$ may be described in terms of its cohomology $E^{\ast}\mathbf{Y}$, together with the action of the primary operations $E^{\ast}\mathbf{E}$ on it. We show how the higher terms of the spectral sequence can be similarly described in terms of the higher order truncated $\mathbf{E}$-mapping algebra for $\mathbf{Y}$ — that is, truncations of the function spectra $\operatorname{Fun}(\mathbf{Y},\mathbf{M})$ for various $\mathbf{E}$-modules $\mathbf{M}$, equipped with the action of $\operatorname{Fun}(\mathbf{M},\mathbf{M}^\prime)$ on them.
DOI : 10.4310/HHA.2021.v23.n1.a12
Classification : 55T15, 55P42, 55U35
Keywords: spectral sequence, truncation, differentials, cosimplicial resolution, mapping algebra
@article{HHA_2021_23_1_a11,
     author = {David Blanc and Surojit Ghosh},
     title = {Mapping algebras and the {Adams} spectral sequence},
     journal = {Homology, homotopy, and applications},
     pages = {219--242},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2021},
     doi = {10.4310/HHA.2021.v23.n1.a12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n1.a12/}
}
TY  - JOUR
AU  - David Blanc
AU  - Surojit Ghosh
TI  - Mapping algebras and the Adams spectral sequence
JO  - Homology, homotopy, and applications
PY  - 2021
SP  - 219
EP  - 242
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n1.a12/
DO  - 10.4310/HHA.2021.v23.n1.a12
LA  - en
ID  - HHA_2021_23_1_a11
ER  - 
%0 Journal Article
%A David Blanc
%A Surojit Ghosh
%T Mapping algebras and the Adams spectral sequence
%J Homology, homotopy, and applications
%D 2021
%P 219-242
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n1.a12/
%R 10.4310/HHA.2021.v23.n1.a12
%G en
%F HHA_2021_23_1_a11
David Blanc; Surojit Ghosh. Mapping algebras and the Adams spectral sequence. Homology, homotopy, and applications, Tome 23 (2021) no. 1, pp. 219-242. doi : 10.4310/HHA.2021.v23.n1.a12. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n1.a12/

Cité par Sources :