Flatness and Shipley’s algebraicization theorem
Homology, homotopy, and applications, Tome 23 (2021) no. 1, pp. 191-218.

Voir la notice de l'article provenant de la source International Press of Boston

We provide an enhancement of Shipley’s algebraicization theorem which behaves better in the context of commutative algebras. This involves defining flat model structures as in Shipley and Pavlov–Scholbach, and showing that the functors still provide Quillen equivalences in this refined context. The use of flat model structures allows one to identify the algebraic counterparts of change of groups functors, as demonstrated in forthcoming work of the author.
DOI : 10.4310/HHA.2021.v23.n1.a11
Classification : 55P43
Keywords: flat model structure, commutative algebra spectra, rational algebraic models
@article{HHA_2021_23_1_a10,
     author = {Jordan Williamson},
     title = {Flatness and {Shipley{\textquoteright}s} algebraicization theorem},
     journal = {Homology, homotopy, and applications},
     pages = {191--218},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2021},
     doi = {10.4310/HHA.2021.v23.n1.a11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n1.a11/}
}
TY  - JOUR
AU  - Jordan Williamson
TI  - Flatness and Shipley’s algebraicization theorem
JO  - Homology, homotopy, and applications
PY  - 2021
SP  - 191
EP  - 218
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n1.a11/
DO  - 10.4310/HHA.2021.v23.n1.a11
LA  - en
ID  - HHA_2021_23_1_a10
ER  - 
%0 Journal Article
%A Jordan Williamson
%T Flatness and Shipley’s algebraicization theorem
%J Homology, homotopy, and applications
%D 2021
%P 191-218
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n1.a11/
%R 10.4310/HHA.2021.v23.n1.a11
%G en
%F HHA_2021_23_1_a10
Jordan Williamson. Flatness and Shipley’s algebraicization theorem. Homology, homotopy, and applications, Tome 23 (2021) no. 1, pp. 191-218. doi : 10.4310/HHA.2021.v23.n1.a11. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n1.a11/

Cité par Sources :