Truncated derived functors and spectral sequences
Homology, homotopy, and applications, Tome 23 (2021) no. 1, pp. 159-189.

Voir la notice de l'article provenant de la source International Press of Boston

The $E_2$-term of the Adams spectral sequence may be identified with certain derived functors, and this also holds for a number of other spectral sequences. Our goal is to show how the higher terms of such spectral sequences are determined by truncations of relative derived functors, defined in terms of certain simplicial functors called mapping algebras.
DOI : 10.4310/HHA.2021.v23.n1.a10
Classification : 55T99, 18C30, 18G50, 55U35
Keywords: spectral sequence, relative derived functor, truncation, differential, (co)simplicial resolution, mapping algebra
@article{HHA_2021_23_1_a9,
     author = {Hans-Joachim Baues and David Blanc and Boris Chorny},
     title = {Truncated derived functors and spectral sequences},
     journal = {Homology, homotopy, and applications},
     pages = {159--189},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2021},
     doi = {10.4310/HHA.2021.v23.n1.a10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n1.a10/}
}
TY  - JOUR
AU  - Hans-Joachim Baues
AU  - David Blanc
AU  - Boris Chorny
TI  - Truncated derived functors and spectral sequences
JO  - Homology, homotopy, and applications
PY  - 2021
SP  - 159
EP  - 189
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n1.a10/
DO  - 10.4310/HHA.2021.v23.n1.a10
LA  - en
ID  - HHA_2021_23_1_a9
ER  - 
%0 Journal Article
%A Hans-Joachim Baues
%A David Blanc
%A Boris Chorny
%T Truncated derived functors and spectral sequences
%J Homology, homotopy, and applications
%D 2021
%P 159-189
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n1.a10/
%R 10.4310/HHA.2021.v23.n1.a10
%G en
%F HHA_2021_23_1_a9
Hans-Joachim Baues; David Blanc; Boris Chorny. Truncated derived functors and spectral sequences. Homology, homotopy, and applications, Tome 23 (2021) no. 1, pp. 159-189. doi : 10.4310/HHA.2021.v23.n1.a10. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2021.v23.n1.a10/

Cité par Sources :