An algebraic representation of globular sets
Homology, homotopy, and applications, Tome 22 (2020) no. 2, pp. 135-150.

Voir la notice de l'article provenant de la source International Press of Boston

We describe a fully faithful embedding of the category of (reflexive) globular sets into the category of counital cosymmetric $R$-coalgebras when $R$ is an integral domain. This embedding is a lift of the usual functor of $R$-chains and the extra structure consists of a derived form of cup coproduct. Additionally, we construct a functor from group-like counital cosymmetric $R$-coalgebras to $\omega$-categories and use it to connect two fundamental constructions associated to oriented simplices: Steenrod’s cup‑$i$ coproducts and Street’s orientals. The first defines the square operations in the cohomology of spaces, the second, the nerve of higher-dimensional categories.
DOI : 10.4310/HHA.2020.v22.n2.a8
Classification : 18D05, 55S05
Keywords: globular sets, higher categories, $E_{\infty}$-structures, Steenrod cup‑$i$ products
@article{HHA_2020_22_2_a7,
     author = {Anibal M. Medina-Mardones},
     title = {An algebraic representation of globular sets},
     journal = {Homology, homotopy, and applications},
     pages = {135--150},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2020},
     doi = {10.4310/HHA.2020.v22.n2.a8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n2.a8/}
}
TY  - JOUR
AU  - Anibal M. Medina-Mardones
TI  - An algebraic representation of globular sets
JO  - Homology, homotopy, and applications
PY  - 2020
SP  - 135
EP  - 150
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n2.a8/
DO  - 10.4310/HHA.2020.v22.n2.a8
LA  - en
ID  - HHA_2020_22_2_a7
ER  - 
%0 Journal Article
%A Anibal M. Medina-Mardones
%T An algebraic representation of globular sets
%J Homology, homotopy, and applications
%D 2020
%P 135-150
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n2.a8/
%R 10.4310/HHA.2020.v22.n2.a8
%G en
%F HHA_2020_22_2_a7
Anibal M. Medina-Mardones. An algebraic representation of globular sets. Homology, homotopy, and applications, Tome 22 (2020) no. 2, pp. 135-150. doi : 10.4310/HHA.2020.v22.n2.a8. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n2.a8/

Cité par Sources :