Quantifying Quillen’s uniform $\mathcal{F}_p$-isomorphism theorem
Homology, homotopy, and applications, Tome 22 (2020) no. 2, pp. 73-90.

Voir la notice de l'article provenant de la source International Press of Boston

Let $G$ be a finite group with $2$-Sylow subgroup of order less than or equal to $16$. For such a $G$, we prove a quantified version of Quillen’s uniform $\mathcal{F}_p$-isomorphism theorem, which holds uniformly for all $G$-spaces. We do this by bounding from above the exponent of Borel equivariant $\mathbf{F}_2$-cohomology, as introduced by Mathew–Naumann–Noel, with respect to the family of elementary abelian $2$-subgroups.
DOI : 10.4310/HHA.2020.v22.n2.a4
Classification : 18G40, 20J06, 55N91, 55P42, 55P91
Keywords: group cohomology, Quillen’s F-isomorphism theorem, equivariant homotopy theory, spectral sequence
@article{HHA_2020_22_2_a3,
     author = {Koenraad van Woerden},
     title = {Quantifying {Quillen{\textquoteright}s} uniform $\mathcal{F}_p$-isomorphism theorem},
     journal = {Homology, homotopy, and applications},
     pages = {73--90},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2020},
     doi = {10.4310/HHA.2020.v22.n2.a4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n2.a4/}
}
TY  - JOUR
AU  - Koenraad van Woerden
TI  - Quantifying Quillen’s uniform $\mathcal{F}_p$-isomorphism theorem
JO  - Homology, homotopy, and applications
PY  - 2020
SP  - 73
EP  - 90
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n2.a4/
DO  - 10.4310/HHA.2020.v22.n2.a4
LA  - en
ID  - HHA_2020_22_2_a3
ER  - 
%0 Journal Article
%A Koenraad van Woerden
%T Quantifying Quillen’s uniform $\mathcal{F}_p$-isomorphism theorem
%J Homology, homotopy, and applications
%D 2020
%P 73-90
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n2.a4/
%R 10.4310/HHA.2020.v22.n2.a4
%G en
%F HHA_2020_22_2_a3
Koenraad van Woerden. Quantifying Quillen’s uniform $\mathcal{F}_p$-isomorphism theorem. Homology, homotopy, and applications, Tome 22 (2020) no. 2, pp. 73-90. doi : 10.4310/HHA.2020.v22.n2.a4. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n2.a4/

Cité par Sources :