Braided categorical groups and strictifying associators
Homology, homotopy, and applications, Tome 22 (2020) no. 2, pp. 295-321.

Voir la notice de l'article provenant de la source International Press of Boston

A key invariant of a braided categorical group is its quadratic form, introduced by Joyal and Street. We show that the categorical group is braided equivalent to a simultaneously skeletal and strictly associative one if and only if the quadratic form comes from a bilinear form. This generalizes the result of Johnson–Osorno that all Picard groupoids can simultaneously be strictified and skeletalized, except that in the braided case there is a genuine obstruction.
DOI : 10.4310/HHA.2020.v22.n2.a19
Classification : 18D10, 19D23
Keywords: braided categorical group, Picard groupoid, strictification, skeletalization, associator
@article{HHA_2020_22_2_a18,
     author = {Oliver Braunling},
     title = {Braided categorical groups and strictifying associators},
     journal = {Homology, homotopy, and applications},
     pages = {295--321},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2020},
     doi = {10.4310/HHA.2020.v22.n2.a19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n2.a19/}
}
TY  - JOUR
AU  - Oliver Braunling
TI  - Braided categorical groups and strictifying associators
JO  - Homology, homotopy, and applications
PY  - 2020
SP  - 295
EP  - 321
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n2.a19/
DO  - 10.4310/HHA.2020.v22.n2.a19
LA  - en
ID  - HHA_2020_22_2_a18
ER  - 
%0 Journal Article
%A Oliver Braunling
%T Braided categorical groups and strictifying associators
%J Homology, homotopy, and applications
%D 2020
%P 295-321
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n2.a19/
%R 10.4310/HHA.2020.v22.n2.a19
%G en
%F HHA_2020_22_2_a18
Oliver Braunling. Braided categorical groups and strictifying associators. Homology, homotopy, and applications, Tome 22 (2020) no. 2, pp. 295-321. doi : 10.4310/HHA.2020.v22.n2.a19. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n2.a19/

Cité par Sources :