A simple proof of Curtis’ connectivity theorem for Lie powers
Homology, homotopy, and applications, Tome 22 (2020) no. 2, pp. 251-258.

Voir la notice de l'article provenant de la source International Press of Boston

We give a simple proof of Curtis’ theorem: if $A_{\bullet}$ is a $k$-connected free simplicial abelian group, then $L^n (A_{\bullet})$ is a $k + \lceil \operatorname{log}_2 n \rceil$-connected simplicial abelian group, where $L^n$ is the $n$‑th Lie power functor. In the proof we do not use Curtis’ decomposition of Lie powers. Instead we use the Chevalley–Eilenberg complex for the free Lie algebra.
DOI : 10.4310/HHA.2020.v22.n2.a15
Keywords: homotopy theory, unstable Adams spectral sequence, simplicial group, connectivity, Chevalley–Eilenberg complex
@article{HHA_2020_22_2_a14,
     author = {Sergei O. Ivanov and Vladislav Romanovskii and Andrei Semenov},
     title = {A simple proof of {Curtis{\textquoteright}} connectivity theorem for {Lie} powers},
     journal = {Homology, homotopy, and applications},
     pages = {251--258},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2020},
     doi = {10.4310/HHA.2020.v22.n2.a15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n2.a15/}
}
TY  - JOUR
AU  - Sergei O. Ivanov
AU  - Vladislav Romanovskii
AU  - Andrei Semenov
TI  - A simple proof of Curtis’ connectivity theorem for Lie powers
JO  - Homology, homotopy, and applications
PY  - 2020
SP  - 251
EP  - 258
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n2.a15/
DO  - 10.4310/HHA.2020.v22.n2.a15
LA  - en
ID  - HHA_2020_22_2_a14
ER  - 
%0 Journal Article
%A Sergei O. Ivanov
%A Vladislav Romanovskii
%A Andrei Semenov
%T A simple proof of Curtis’ connectivity theorem for Lie powers
%J Homology, homotopy, and applications
%D 2020
%P 251-258
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n2.a15/
%R 10.4310/HHA.2020.v22.n2.a15
%G en
%F HHA_2020_22_2_a14
Sergei O. Ivanov; Vladislav Romanovskii; Andrei Semenov. A simple proof of Curtis’ connectivity theorem for Lie powers. Homology, homotopy, and applications, Tome 22 (2020) no. 2, pp. 251-258. doi : 10.4310/HHA.2020.v22.n2.a15. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n2.a15/

Cité par Sources :