Compatible actions in semi-abelian categories
Homology, homotopy, and applications, Tome 22 (2020) no. 2, pp. 221-250.

Voir la notice de l'article provenant de la source International Press of Boston

The concept of a pair of compatible actions was introduced in the case of groups by Brown and Loday [6] and in the case of Lie algebras by Ellis [14]. In this article we extend it to the context of semi-abelian categories (that satisfy the Smith is Huq condition). We give a new construction of the Peiffer product, which specialises to the definitions known for groups and Lie algebras. We use it to prove our main result, on the connection between pairs of compatible actions and pairs of crossed modules over a common base object. We also study the Peiffer product in its own right, in terms of its universal properties, and prove its equivalence with existing definitions in specific cases.
DOI : 10.4310/HHA.2020.v22.n2.a14
Classification : 18D35, 18E10, 20J15
Keywords: semi-abelian category, pair of compatible actions, internal action, crossed module, Peiffer product, non-abelian tensor product
@article{HHA_2020_22_2_a13,
     author = {Davide di Micco and Tim Van der Linden},
     title = {Compatible actions in semi-abelian categories},
     journal = {Homology, homotopy, and applications},
     pages = {221--250},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2020},
     doi = {10.4310/HHA.2020.v22.n2.a14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n2.a14/}
}
TY  - JOUR
AU  - Davide di Micco
AU  - Tim Van der Linden
TI  - Compatible actions in semi-abelian categories
JO  - Homology, homotopy, and applications
PY  - 2020
SP  - 221
EP  - 250
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n2.a14/
DO  - 10.4310/HHA.2020.v22.n2.a14
LA  - en
ID  - HHA_2020_22_2_a13
ER  - 
%0 Journal Article
%A Davide di Micco
%A Tim Van der Linden
%T Compatible actions in semi-abelian categories
%J Homology, homotopy, and applications
%D 2020
%P 221-250
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n2.a14/
%R 10.4310/HHA.2020.v22.n2.a14
%G en
%F HHA_2020_22_2_a13
Davide di Micco; Tim Van der Linden. Compatible actions in semi-abelian categories. Homology, homotopy, and applications, Tome 22 (2020) no. 2, pp. 221-250. doi : 10.4310/HHA.2020.v22.n2.a14. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n2.a14/

Cité par Sources :