Equivariant Steinberg summands
Homology, homotopy, and applications, Tome 22 (2020) no. 2, pp. 203-220.

Voir la notice de l'article provenant de la source International Press of Boston

We construct Steinberg summands of $G$-equivariant spectra with $\operatorname{GL}_n (\mathbb{F}_p)$-action. We prove a lemma about their fixed points when $G$ is a $p$-group, and then use this lemma to compute the fixed points of the Steinberg summand of the equivariant classifying space of $(\mathbb{Z} / p)^n$. These results will be used in a companion paper to study the layers in the $\operatorname{mod}$ $p$ symmetric power filtration for $H \underline{\mathbb{F}}_p$.
DOI : 10.4310/HHA.2020.v22.n2.a13
Classification : 20C20, 20G40, 55P42, 55P91
Keywords: equivariant, homology, homotopy
@article{HHA_2020_22_2_a12,
     author = {Krishanu Sankar},
     title = {Equivariant {Steinberg} summands},
     journal = {Homology, homotopy, and applications},
     pages = {203--220},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2020},
     doi = {10.4310/HHA.2020.v22.n2.a13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n2.a13/}
}
TY  - JOUR
AU  - Krishanu Sankar
TI  - Equivariant Steinberg summands
JO  - Homology, homotopy, and applications
PY  - 2020
SP  - 203
EP  - 220
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n2.a13/
DO  - 10.4310/HHA.2020.v22.n2.a13
LA  - en
ID  - HHA_2020_22_2_a12
ER  - 
%0 Journal Article
%A Krishanu Sankar
%T Equivariant Steinberg summands
%J Homology, homotopy, and applications
%D 2020
%P 203-220
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n2.a13/
%R 10.4310/HHA.2020.v22.n2.a13
%G en
%F HHA_2020_22_2_a12
Krishanu Sankar. Equivariant Steinberg summands. Homology, homotopy, and applications, Tome 22 (2020) no. 2, pp. 203-220. doi : 10.4310/HHA.2020.v22.n2.a13. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n2.a13/

Cité par Sources :