Kapranov’s construction of $\operatorname{sh}$ Leibniz algebras
Homology, homotopy, and applications, Tome 22 (2020) no. 1, pp. 141-165.

Voir la notice de l'article provenant de la source International Press of Boston

Motivated by Kapranov’s discovery of an $\operatorname{sh}$ Lie algebra structure on the tangent complex of a Kähler manifold and Chen–Stiénon–Xu’s construction of $\operatorname{sh}$ Leibniz algebras associated with a Lie pair, we find a general method to construct $\operatorname{sh}$ Leibniz algebras. Let $\mathscr{A}$ be a commutative $\operatorname{dg}$ algebra. Given a derivation of $\mathscr{A}$ valued in a $\operatorname{dg}$ module $\Omega$, we show that there exist $\operatorname{sh}$ Leibniz algebra structures on the dual module of $\Omega$. Moreover, we prove that this process establishes a functor from the category of $\operatorname{dg}$ module valued derivations to the category of $\operatorname{sh}$Leibniz algebras over $\mathscr{A}$.
DOI : 10.4310/HHA.2020.v22.n1.a9
Classification : 16E45, 18G55
Keywords: $\operatorname{sh}$ Leibniz algebra, Atiyah class, commutative $\operatorname{dg}$ algebra
@article{HHA_2020_22_1_a8,
     author = {Zhuo Chen and Zhangju Liu and Maosong Xiang},
     title = {Kapranov{\textquoteright}s construction of $\operatorname{sh}$ {Leibniz} algebras},
     journal = {Homology, homotopy, and applications},
     pages = {141--165},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2020},
     doi = {10.4310/HHA.2020.v22.n1.a9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a9/}
}
TY  - JOUR
AU  - Zhuo Chen
AU  - Zhangju Liu
AU  - Maosong Xiang
TI  - Kapranov’s construction of $\operatorname{sh}$ Leibniz algebras
JO  - Homology, homotopy, and applications
PY  - 2020
SP  - 141
EP  - 165
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a9/
DO  - 10.4310/HHA.2020.v22.n1.a9
LA  - en
ID  - HHA_2020_22_1_a8
ER  - 
%0 Journal Article
%A Zhuo Chen
%A Zhangju Liu
%A Maosong Xiang
%T Kapranov’s construction of $\operatorname{sh}$ Leibniz algebras
%J Homology, homotopy, and applications
%D 2020
%P 141-165
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a9/
%R 10.4310/HHA.2020.v22.n1.a9
%G en
%F HHA_2020_22_1_a8
Zhuo Chen; Zhangju Liu; Maosong Xiang. Kapranov’s construction of $\operatorname{sh}$ Leibniz algebras. Homology, homotopy, and applications, Tome 22 (2020) no. 1, pp. 141-165. doi : 10.4310/HHA.2020.v22.n1.a9. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a9/

Cité par Sources :