Multiplicative structure of the cohomology ring of real toric spaces
Homology, homotopy, and applications, Tome 22 (2020) no. 1, pp. 97-115.

Voir la notice de l'article provenant de la source International Press of Boston

A real toric space is a topological space which admits a well-behaved $\mathbb{Z}_2^k$-action. Real moment-angle complexes and real toric manifolds are typical examples of real toric spaces. A real toric space is determined by the pair of a simplicial complex $K$ and a characteristic matrix $\Lambda$. In this paper, we provide an explicit $R$-cohomology ring formula of a real toric space in terms of $K$ and $\Lambda$, where $R$ is a commutative ring with unity in which $2$ is a unit. Interestingly, it has a natural $(\mathbb{Z} \oplus \operatorname{row} \Lambda)$-grading. As corollaries, we compute the cohomology rings of (generalized) real Bott manifolds in terms of binary matroids, and we also provide a criterion for real toric spaces to be cohomologically symplectic.
DOI : 10.4310/HHA.2020.v22.n1.a7
Classification : 14M25, 57N65, 55U10, 57S17
Keywords: real toric variety, small cover, real toric space, real moment-angle complex, real subspace arrangement, real Bott manifold, generalized real Bott manifold, cohomologically symplectic manifold
@article{HHA_2020_22_1_a6,
     author = {Suyoung Choi and Hanchul Park},
     title = {Multiplicative structure of the cohomology ring of real toric spaces},
     journal = {Homology, homotopy, and applications},
     pages = {97--115},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2020},
     doi = {10.4310/HHA.2020.v22.n1.a7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a7/}
}
TY  - JOUR
AU  - Suyoung Choi
AU  - Hanchul Park
TI  - Multiplicative structure of the cohomology ring of real toric spaces
JO  - Homology, homotopy, and applications
PY  - 2020
SP  - 97
EP  - 115
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a7/
DO  - 10.4310/HHA.2020.v22.n1.a7
LA  - en
ID  - HHA_2020_22_1_a6
ER  - 
%0 Journal Article
%A Suyoung Choi
%A Hanchul Park
%T Multiplicative structure of the cohomology ring of real toric spaces
%J Homology, homotopy, and applications
%D 2020
%P 97-115
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a7/
%R 10.4310/HHA.2020.v22.n1.a7
%G en
%F HHA_2020_22_1_a6
Suyoung Choi; Hanchul Park. Multiplicative structure of the cohomology ring of real toric spaces. Homology, homotopy, and applications, Tome 22 (2020) no. 1, pp. 97-115. doi : 10.4310/HHA.2020.v22.n1.a7. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a7/

Cité par Sources :