Fixed points of coisotropic subgroups of $\Gamma_{k}$ on decomposition spaces
Homology, homotopy, and applications, Tome 22 (2020) no. 1, pp. 77-96.

Voir la notice de l'article provenant de la source International Press of Boston

We study the equivariant homotopy type of the poset ${\mathcal{L}}_{p^k}$ of orthogonal decompositions of ${\mathbb{C}}^{p^k}$. The fixed point space of the $p$-radical subgroup $\Gamma_{k}\subset U(p^k)$ acting on ${\mathcal{L}}_{p^k}$ is shown to be homeomorphic to a symplectic Tits building, a wedge of $(k-1)$-dimensional spheres. Our second result concerns $\Delta_{k}=({\mathbb{Z}}/p)^{k}\subset U(p^k)$ acting on ${\mathbb{C}}^{p^k}$ by the regular representation. We identify a retract of the fixed point space of $\Delta_{k}$ acting on ${\mathcal{L}}_{p^k}$. This retract has the homotopy type of the unreduced suspension of the Tits building for $\operatorname{GL}_{k}\!\left({\mathbb{F}}_{p}\right)$, also a wedge of $(k-1)$-dimensional spheres. As a consequence of these results, we find that the fixed point space of any coisotropic subgroup of $\Gamma_{k}$ contains, as a retract, a wedge of $(k-1)$-dimensional spheres. We make a conjecture about the full homotopy type of the fixed point space of $\Delta_{k}$ acting on ${\mathcal{L}}_{p^k}$, based on a more general branching conjecture, and we show that the conjecture is consistent with our results.
DOI : 10.4310/HHA.2020.v22.n1.a6
Classification : 55N91, 55P65, 55R45
Keywords: Tits building, decomposition space, fixed points, unitary group
@article{HHA_2020_22_1_a5,
     author = {Gregory Arone and Kathryn Lesh},
     title = {Fixed points of coisotropic subgroups of $\Gamma_{k}$ on decomposition spaces},
     journal = {Homology, homotopy, and applications},
     pages = {77--96},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2020},
     doi = {10.4310/HHA.2020.v22.n1.a6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a6/}
}
TY  - JOUR
AU  - Gregory Arone
AU  - Kathryn Lesh
TI  - Fixed points of coisotropic subgroups of $\Gamma_{k}$ on decomposition spaces
JO  - Homology, homotopy, and applications
PY  - 2020
SP  - 77
EP  - 96
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a6/
DO  - 10.4310/HHA.2020.v22.n1.a6
LA  - en
ID  - HHA_2020_22_1_a5
ER  - 
%0 Journal Article
%A Gregory Arone
%A Kathryn Lesh
%T Fixed points of coisotropic subgroups of $\Gamma_{k}$ on decomposition spaces
%J Homology, homotopy, and applications
%D 2020
%P 77-96
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a6/
%R 10.4310/HHA.2020.v22.n1.a6
%G en
%F HHA_2020_22_1_a5
Gregory Arone; Kathryn Lesh. Fixed points of coisotropic subgroups of $\Gamma_{k}$ on decomposition spaces. Homology, homotopy, and applications, Tome 22 (2020) no. 1, pp. 77-96. doi : 10.4310/HHA.2020.v22.n1.a6. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a6/

Cité par Sources :