Couniversal spaces which are equivariantly commutative ring spectra
Homology, homotopy, and applications, Tome 22 (2020) no. 1, pp. 69-75.

Voir la notice de l'article provenant de la source International Press of Boston

The paper identifies which couniversal spaces have suspension spectra equivalent to commutative orthogonal ring $G$-spectra for a compact Lie group $G$. Equivalently these are the couniversal spaces admitting an action of an $E_{\infty}^G$-operad. We show that they are precisely the couniversal spaces associated to a cofamily whose minimal subgroups are connected.
DOI : 10.4310/HHA.2020.v22.n1.a5
Classification : 18D50, 55P91
Keywords: equivariant ring spectra, commutativity, operad, orthogonal spectra, couniversal space
@article{HHA_2020_22_1_a4,
     author = {J.P.C. Greenlees},
     title = {Couniversal spaces which are equivariantly commutative ring spectra},
     journal = {Homology, homotopy, and applications},
     pages = {69--75},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2020},
     doi = {10.4310/HHA.2020.v22.n1.a5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a5/}
}
TY  - JOUR
AU  - J.P.C. Greenlees
TI  - Couniversal spaces which are equivariantly commutative ring spectra
JO  - Homology, homotopy, and applications
PY  - 2020
SP  - 69
EP  - 75
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a5/
DO  - 10.4310/HHA.2020.v22.n1.a5
LA  - en
ID  - HHA_2020_22_1_a4
ER  - 
%0 Journal Article
%A J.P.C. Greenlees
%T Couniversal spaces which are equivariantly commutative ring spectra
%J Homology, homotopy, and applications
%D 2020
%P 69-75
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a5/
%R 10.4310/HHA.2020.v22.n1.a5
%G en
%F HHA_2020_22_1_a4
J.P.C. Greenlees. Couniversal spaces which are equivariantly commutative ring spectra. Homology, homotopy, and applications, Tome 22 (2020) no. 1, pp. 69-75. doi : 10.4310/HHA.2020.v22.n1.a5. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a5/

Cité par Sources :