Equivariant higher Hochschild homology and topological field theories
Homology, homotopy, and applications, Tome 22 (2020) no. 1, pp. 27-54.

Voir la notice de l'article provenant de la source International Press of Boston

We present a version of higher Hochschild homology for spaces equipped with principal bundles for a structure group $G$. As coefficients, we allow $E_{\infty}$-algebras with $G$-action. For this homology theory, we establish an equivariant version of excision and prove that it extends to an equivariant topological field theory with values in the $(\infty , 1)$-category of cospans of $E_{\infty}$-algebras.
DOI : 10.4310/HHA.2020.v22.n1.a3
Classification : 13D03, 81T45
Keywords: Hochschild homology, topological field theory, bordism category, principal bundle, $E_{\infty}$-algebra
@article{HHA_2020_22_1_a2,
     author = {Lukas M\"uller and Lukas Woike},
     title = {Equivariant higher {Hochschild} homology and topological field theories},
     journal = {Homology, homotopy, and applications},
     pages = {27--54},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2020},
     doi = {10.4310/HHA.2020.v22.n1.a3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a3/}
}
TY  - JOUR
AU  - Lukas Müller
AU  - Lukas Woike
TI  - Equivariant higher Hochschild homology and topological field theories
JO  - Homology, homotopy, and applications
PY  - 2020
SP  - 27
EP  - 54
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a3/
DO  - 10.4310/HHA.2020.v22.n1.a3
LA  - en
ID  - HHA_2020_22_1_a2
ER  - 
%0 Journal Article
%A Lukas Müller
%A Lukas Woike
%T Equivariant higher Hochschild homology and topological field theories
%J Homology, homotopy, and applications
%D 2020
%P 27-54
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a3/
%R 10.4310/HHA.2020.v22.n1.a3
%G en
%F HHA_2020_22_1_a2
Lukas Müller; Lukas Woike. Equivariant higher Hochschild homology and topological field theories. Homology, homotopy, and applications, Tome 22 (2020) no. 1, pp. 27-54. doi : 10.4310/HHA.2020.v22.n1.a3. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a3/

Cité par Sources :