Homology pro stability for Tor-unital pro rings
Homology, homotopy, and applications, Tome 22 (2020) no. 1, pp. 343-374.

Voir la notice de l'article provenant de la source International Press of Boston

Let ${\lbrace A_m \rbrace}_m$ be a pro system of associative commutative, not necessarily unital, rings. Assume that the pro systems of Tor-groups ${\lbrace \operatorname{Tor}^{\mathbb{Z} \ltimes A_m}_{i} (\mathbb{Z}, \mathbb{Z}) \rbrace }_m$ vanish for all $i \gt 0$. Then we prove that the pro systems ${\lbrace H_l (\operatorname{GL}_n (A_m)) \rbrace }_m$ stabilize up to pro isomorphisms for $n$ large enough relative to $l$ and the stable range of $A_m$’s.
DOI : 10.4310/HHA.2020.v22.n1.a20
Classification : 13D15, 16E20, 19B14
Keywords: homology stability, $K$-theory excision, Tor-unitality
@article{HHA_2020_22_1_a19,
     author = {Ryomei Iwasa},
     title = {Homology pro stability for {Tor-unital} pro rings},
     journal = {Homology, homotopy, and applications},
     pages = {343--374},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2020},
     doi = {10.4310/HHA.2020.v22.n1.a20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a20/}
}
TY  - JOUR
AU  - Ryomei Iwasa
TI  - Homology pro stability for Tor-unital pro rings
JO  - Homology, homotopy, and applications
PY  - 2020
SP  - 343
EP  - 374
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a20/
DO  - 10.4310/HHA.2020.v22.n1.a20
LA  - en
ID  - HHA_2020_22_1_a19
ER  - 
%0 Journal Article
%A Ryomei Iwasa
%T Homology pro stability for Tor-unital pro rings
%J Homology, homotopy, and applications
%D 2020
%P 343-374
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a20/
%R 10.4310/HHA.2020.v22.n1.a20
%G en
%F HHA_2020_22_1_a19
Ryomei Iwasa. Homology pro stability for Tor-unital pro rings. Homology, homotopy, and applications, Tome 22 (2020) no. 1, pp. 343-374. doi : 10.4310/HHA.2020.v22.n1.a20. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a20/

Cité par Sources :