The Omega spectrum for Pengelley’s $BoP$
Homology, homotopy, and applications, Tome 22 (2020) no. 1, pp. 11-25.

Voir la notice de l'article provenant de la source International Press of Boston

We compute the homology of the spaces in the Omega spectrum for $BoP$. There is no torsion in $H_{*} (\underline{BoP}_i)$ for $i \geqslant 2$, and things are only slightly more complicated for $i \lt 2$. We find the complete homotopy type of $\underline{BoP}_i$ for $i \leqslant 6$ and conjecture the homotopy type for $i \gt 6$. This completes the computation of all $H_{*} (\underline{MSU}_{*})$.
DOI : 10.4310/HHA.2020.v22.n1.a2
Classification : 55N10, 55N22, 55P15
Keywords: homology, Hopf algebra, cobordism, homotopy type
@article{HHA_2020_22_1_a1,
     author = {W. Stephen Wilson},
     title = {The {Omega} spectrum for {Pengelley{\textquoteright}s} $BoP$},
     journal = {Homology, homotopy, and applications},
     pages = {11--25},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2020},
     doi = {10.4310/HHA.2020.v22.n1.a2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a2/}
}
TY  - JOUR
AU  - W. Stephen Wilson
TI  - The Omega spectrum for Pengelley’s $BoP$
JO  - Homology, homotopy, and applications
PY  - 2020
SP  - 11
EP  - 25
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a2/
DO  - 10.4310/HHA.2020.v22.n1.a2
LA  - en
ID  - HHA_2020_22_1_a1
ER  - 
%0 Journal Article
%A W. Stephen Wilson
%T The Omega spectrum for Pengelley’s $BoP$
%J Homology, homotopy, and applications
%D 2020
%P 11-25
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a2/
%R 10.4310/HHA.2020.v22.n1.a2
%G en
%F HHA_2020_22_1_a1
W. Stephen Wilson. The Omega spectrum for Pengelley’s $BoP$. Homology, homotopy, and applications, Tome 22 (2020) no. 1, pp. 11-25. doi : 10.4310/HHA.2020.v22.n1.a2. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a2/

Cité par Sources :