A lax monoidal model for multilinearization
Homology, homotopy, and applications, Tome 22 (2020) no. 1, pp. 319-331.

Voir la notice de l'article provenant de la source International Press of Boston

Using the category of finite sets and injections, we construct a new model for the multilinearization of multifunctors between spaces that appears in the derivatives of Goodwillie calculus. We show that this model yields a lax monoidal functor from the category of symmetric functor sequences to the category of symmetric sequences of spaces after evaluating at $S^0$. We also give a construction which extends the result to symmetric sequences of spectra.
DOI : 10.4310/HHA.2020.v22.n1.a18
Classification : 18D50, 55P47, 55P65
@article{HHA_2020_22_1_a17,
     author = {Sarah Yeakel},
     title = {A lax monoidal model for multilinearization},
     journal = {Homology, homotopy, and applications},
     pages = {319--331},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2020},
     doi = {10.4310/HHA.2020.v22.n1.a18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a18/}
}
TY  - JOUR
AU  - Sarah Yeakel
TI  - A lax monoidal model for multilinearization
JO  - Homology, homotopy, and applications
PY  - 2020
SP  - 319
EP  - 331
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a18/
DO  - 10.4310/HHA.2020.v22.n1.a18
LA  - en
ID  - HHA_2020_22_1_a17
ER  - 
%0 Journal Article
%A Sarah Yeakel
%T A lax monoidal model for multilinearization
%J Homology, homotopy, and applications
%D 2020
%P 319-331
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a18/
%R 10.4310/HHA.2020.v22.n1.a18
%G en
%F HHA_2020_22_1_a17
Sarah Yeakel. A lax monoidal model for multilinearization. Homology, homotopy, and applications, Tome 22 (2020) no. 1, pp. 319-331. doi : 10.4310/HHA.2020.v22.n1.a18. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a18/

Cité par Sources :