Voir la notice de l'article provenant de la source International Press of Boston
@article{HHA_2020_22_1_a11, author = {Daniel Kasprowski and Bernhard K\"ock and Christoph Winges}, title = {$K_1$-groups via binary complexes of fixed length}, journal = {Homology, homotopy, and applications}, pages = {203--213}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2020}, doi = {10.4310/HHA.2020.v22.n1.a12}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a12/} }
TY - JOUR AU - Daniel Kasprowski AU - Bernhard Köck AU - Christoph Winges TI - $K_1$-groups via binary complexes of fixed length JO - Homology, homotopy, and applications PY - 2020 SP - 203 EP - 213 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a12/ DO - 10.4310/HHA.2020.v22.n1.a12 LA - en ID - HHA_2020_22_1_a11 ER -
%0 Journal Article %A Daniel Kasprowski %A Bernhard Köck %A Christoph Winges %T $K_1$-groups via binary complexes of fixed length %J Homology, homotopy, and applications %D 2020 %P 203-213 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a12/ %R 10.4310/HHA.2020.v22.n1.a12 %G en %F HHA_2020_22_1_a11
Daniel Kasprowski; Bernhard Köck; Christoph Winges. $K_1$-groups via binary complexes of fixed length. Homology, homotopy, and applications, Tome 22 (2020) no. 1, pp. 203-213. doi : 10.4310/HHA.2020.v22.n1.a12. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a12/
Cité par Sources :