$K_1$-groups via binary complexes of fixed length
Homology, homotopy, and applications, Tome 22 (2020) no. 1, pp. 203-213.

Voir la notice de l'article provenant de la source International Press of Boston

We modify Grayson’s model of $K_1$ of an exact category to give a presentation whose generators are binary acyclic complexes of length at most $k$ for any given $k \geqslant 2$. As a corollary, we obtain another, very short proof of the identification of Nenashev’s and Grayson’s presentations.
DOI : 10.4310/HHA.2020.v22.n1.a12
Classification : 19D06, 18E10, 19B99
Keywords: exact category, binary acyclic complex, Nenashev relation
@article{HHA_2020_22_1_a11,
     author = {Daniel Kasprowski and Bernhard K\"ock and Christoph Winges},
     title = {$K_1$-groups via binary complexes of fixed length},
     journal = {Homology, homotopy, and applications},
     pages = {203--213},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2020},
     doi = {10.4310/HHA.2020.v22.n1.a12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a12/}
}
TY  - JOUR
AU  - Daniel Kasprowski
AU  - Bernhard Köck
AU  - Christoph Winges
TI  - $K_1$-groups via binary complexes of fixed length
JO  - Homology, homotopy, and applications
PY  - 2020
SP  - 203
EP  - 213
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a12/
DO  - 10.4310/HHA.2020.v22.n1.a12
LA  - en
ID  - HHA_2020_22_1_a11
ER  - 
%0 Journal Article
%A Daniel Kasprowski
%A Bernhard Köck
%A Christoph Winges
%T $K_1$-groups via binary complexes of fixed length
%J Homology, homotopy, and applications
%D 2020
%P 203-213
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a12/
%R 10.4310/HHA.2020.v22.n1.a12
%G en
%F HHA_2020_22_1_a11
Daniel Kasprowski; Bernhard Köck; Christoph Winges. $K_1$-groups via binary complexes of fixed length. Homology, homotopy, and applications, Tome 22 (2020) no. 1, pp. 203-213. doi : 10.4310/HHA.2020.v22.n1.a12. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a12/

Cité par Sources :