The Euler characteristic of the regular spherical polygon spaces
Homology, homotopy, and applications, Tome 22 (2020) no. 1, pp. 1-10.

Voir la notice de l'article provenant de la source International Press of Boston

Let $a$ be a real number satisfying $0 \lt a \lt \pi$. We denote by $M_n (a)$ the configuration space of regular spherical $n$-gons with side-lengths $a$. The purpose of this paper is to determine $\chi (M_n (a))$ for all a and odd $n$. To do so, we construct a manifold $X_n$ and a function $\mu : X_n \to \mathbb{R}$ such that $\mu^{-1} (a) = M_n (a)$. In fact, the function μ is different from the Kapovich–Millson Morse function. We determine the index of each critical point of $\mu$. Since a level set is obtained by successive Morse surgeries, we can determine $\chi (M_n (a))$.
DOI : 10.4310/HHA.2020.v22.n1.a1
Classification : 58D29, 58E05
Keywords: spherical polygon space, Morse function, Euler characteristic
@article{HHA_2020_22_1_a0,
     author = {Yasuhiko Kamiyama},
     title = {The {Euler} characteristic of the regular spherical polygon spaces},
     journal = {Homology, homotopy, and applications},
     pages = {1--10},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2020},
     doi = {10.4310/HHA.2020.v22.n1.a1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a1/}
}
TY  - JOUR
AU  - Yasuhiko Kamiyama
TI  - The Euler characteristic of the regular spherical polygon spaces
JO  - Homology, homotopy, and applications
PY  - 2020
SP  - 1
EP  - 10
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a1/
DO  - 10.4310/HHA.2020.v22.n1.a1
LA  - en
ID  - HHA_2020_22_1_a0
ER  - 
%0 Journal Article
%A Yasuhiko Kamiyama
%T The Euler characteristic of the regular spherical polygon spaces
%J Homology, homotopy, and applications
%D 2020
%P 1-10
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a1/
%R 10.4310/HHA.2020.v22.n1.a1
%G en
%F HHA_2020_22_1_a0
Yasuhiko Kamiyama. The Euler characteristic of the regular spherical polygon spaces. Homology, homotopy, and applications, Tome 22 (2020) no. 1, pp. 1-10. doi : 10.4310/HHA.2020.v22.n1.a1. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2020.v22.n1.a1/

Cité par Sources :