Differential graded algebras over some reductive groups
Homology, homotopy, and applications, Tome 21 (2019) no. 2, pp. 145-169.

Voir la notice de l'article provenant de la source International Press of Boston

In this paper, we study the general properties of commutative differential graded algebras in the category of representations over a reductive algebraic group with an injective central cocharacter. Besides describing the derived category of differential graded modules over such an algebra, we also provide a criterion for the existence of a $t$-structure on the derived category together with a characterization of the coordinate ring of the Tannakian fundamental group of its heart.
DOI : 10.4310/HHA.2019.v21.n2.a9
Classification : 18D35
Keywords: rational homotopy theory, graded differential algebra, reductive group, Tannakian category, Hopf algebra
@article{HHA_2019_21_2_a8,
     author = {Jin Cao},
     title = {Differential graded algebras over some reductive groups},
     journal = {Homology, homotopy, and applications},
     pages = {145--169},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2019},
     doi = {10.4310/HHA.2019.v21.n2.a9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n2.a9/}
}
TY  - JOUR
AU  - Jin Cao
TI  - Differential graded algebras over some reductive groups
JO  - Homology, homotopy, and applications
PY  - 2019
SP  - 145
EP  - 169
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n2.a9/
DO  - 10.4310/HHA.2019.v21.n2.a9
LA  - en
ID  - HHA_2019_21_2_a8
ER  - 
%0 Journal Article
%A Jin Cao
%T Differential graded algebras over some reductive groups
%J Homology, homotopy, and applications
%D 2019
%P 145-169
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n2.a9/
%R 10.4310/HHA.2019.v21.n2.a9
%G en
%F HHA_2019_21_2_a8
Jin Cao. Differential graded algebras over some reductive groups. Homology, homotopy, and applications, Tome 21 (2019) no. 2, pp. 145-169. doi : 10.4310/HHA.2019.v21.n2.a9. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n2.a9/

Cité par Sources :