On the homology of Lie algebras like $\mathfrak{gl}(\infty, R)$
Homology, homotopy, and applications, Tome 21 (2019) no. 2, pp. 131-143.

Voir la notice de l'article provenant de la source International Press of Boston

We revisit a recent paper of Fialowski and Iohara. They compute the homology of the Lie algebra $\mathfrak{gl}(\infty, R)$ for $R$ an associative unital algebra over a field of characteristic zero. We explain how to obtain essentially the same results by a completely different method.
DOI : 10.4310/HHA.2019.v21.n2.a8
Classification : 20J05
Keywords: infinite matrix algebra, ring-level delooping
@article{HHA_2019_21_2_a7,
     author = {Oliver Braunling},
     title = {On the homology of {Lie} algebras like $\mathfrak{gl}(\infty, R)$},
     journal = {Homology, homotopy, and applications},
     pages = {131--143},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2019},
     doi = {10.4310/HHA.2019.v21.n2.a8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n2.a8/}
}
TY  - JOUR
AU  - Oliver Braunling
TI  - On the homology of Lie algebras like $\mathfrak{gl}(\infty, R)$
JO  - Homology, homotopy, and applications
PY  - 2019
SP  - 131
EP  - 143
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n2.a8/
DO  - 10.4310/HHA.2019.v21.n2.a8
LA  - en
ID  - HHA_2019_21_2_a7
ER  - 
%0 Journal Article
%A Oliver Braunling
%T On the homology of Lie algebras like $\mathfrak{gl}(\infty, R)$
%J Homology, homotopy, and applications
%D 2019
%P 131-143
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n2.a8/
%R 10.4310/HHA.2019.v21.n2.a8
%G en
%F HHA_2019_21_2_a7
Oliver Braunling. On the homology of Lie algebras like $\mathfrak{gl}(\infty, R)$. Homology, homotopy, and applications, Tome 21 (2019) no. 2, pp. 131-143. doi : 10.4310/HHA.2019.v21.n2.a8. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n2.a8/

Cité par Sources :