Stable indecomposability of three-manifolds
Homology, homotopy, and applications, Tome 21 (2019) no. 2, pp. 27-28.

Voir la notice de l'article provenant de la source International Press of Boston

We explain that a variant of a recent result of Kwasik–Schultz about stable indecomposability of three-manifolds is an immediate consequence of results of Kotschick, Löh and Neofytidis.
DOI : 10.4310/HHA.2019.v21.n2.a3
Classification : 57N65
Keywords: Cartesian product, domination, three-manifold
@article{HHA_2019_21_2_a2,
     author = {M. J. D. Hamilton and D. Kotschick},
     title = {Stable indecomposability of three-manifolds},
     journal = {Homology, homotopy, and applications},
     pages = {27--28},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2019},
     doi = {10.4310/HHA.2019.v21.n2.a3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n2.a3/}
}
TY  - JOUR
AU  - M. J. D. Hamilton
AU  - D. Kotschick
TI  - Stable indecomposability of three-manifolds
JO  - Homology, homotopy, and applications
PY  - 2019
SP  - 27
EP  - 28
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n2.a3/
DO  - 10.4310/HHA.2019.v21.n2.a3
LA  - en
ID  - HHA_2019_21_2_a2
ER  - 
%0 Journal Article
%A M. J. D. Hamilton
%A D. Kotschick
%T Stable indecomposability of three-manifolds
%J Homology, homotopy, and applications
%D 2019
%P 27-28
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n2.a3/
%R 10.4310/HHA.2019.v21.n2.a3
%G en
%F HHA_2019_21_2_a2
M. J. D. Hamilton; D. Kotschick. Stable indecomposability of three-manifolds. Homology, homotopy, and applications, Tome 21 (2019) no. 2, pp. 27-28. doi : 10.4310/HHA.2019.v21.n2.a3. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n2.a3/

Cité par Sources :