Homotopy cartesian diagrams in $n$-angulated categories
Homology, homotopy, and applications, Tome 21 (2019) no. 2, pp. 377-394.

Voir la notice de l'article provenant de la source International Press of Boston

It has been proved by Bergh and Thaule that the higher mapping cone axiom is equivalent to the higher octahedral axiom for $n$-angulated categories. In this paper we use homotopy cartesian diagrams to give several new equivalent statements of the higher mapping cone axiom. As an application we give a new and elementary proof of the fact that the stable category of a Frobenius $(n-2)$-exact category is an $n$-angulated category, which was first proved by Jasso.
DOI : 10.4310/HHA.2019.v21.n2.a21
Classification : 18E10, 18E30
Keywords: $n$-angulated category, homotopy cartesian, mapping cone axiom, Frobenius $n$-exact category
@article{HHA_2019_21_2_a20,
     author = {Zengqiang Lin and Yan Zheng},
     title = {Homotopy cartesian diagrams in $n$-angulated categories},
     journal = {Homology, homotopy, and applications},
     pages = {377--394},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2019},
     doi = {10.4310/HHA.2019.v21.n2.a21},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n2.a21/}
}
TY  - JOUR
AU  - Zengqiang Lin
AU  - Yan Zheng
TI  - Homotopy cartesian diagrams in $n$-angulated categories
JO  - Homology, homotopy, and applications
PY  - 2019
SP  - 377
EP  - 394
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n2.a21/
DO  - 10.4310/HHA.2019.v21.n2.a21
LA  - en
ID  - HHA_2019_21_2_a20
ER  - 
%0 Journal Article
%A Zengqiang Lin
%A Yan Zheng
%T Homotopy cartesian diagrams in $n$-angulated categories
%J Homology, homotopy, and applications
%D 2019
%P 377-394
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n2.a21/
%R 10.4310/HHA.2019.v21.n2.a21
%G en
%F HHA_2019_21_2_a20
Zengqiang Lin; Yan Zheng. Homotopy cartesian diagrams in $n$-angulated categories. Homology, homotopy, and applications, Tome 21 (2019) no. 2, pp. 377-394. doi : 10.4310/HHA.2019.v21.n2.a21. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n2.a21/

Cité par Sources :