Erratum to “Jacobi–Zariski exact sequence for Hochschild homology and cyclic (co)homology”
Homology, homotopy, and applications, Tome 21 (2019) no. 2, pp. 301-303.

Voir la notice de l'article provenant de la source International Press of Boston

In our paper “Jacobi–Zariski exact sequence for Hochschild homology and cyclic (co)homology” [Homology Homotopy Appl., 14(1):65–78, 2012], in Theorem 2.3 and in all remaining results based on this theorem, it is stated that the Jacobi–Zariski long exact sequence works for the range $p \geqslant 0$. The range should be corrected to $p \geqslant 1$.
DOI : 10.4310/HHA.2019.v21.n2.a16
Classification : 16W70, 18G25, 18G40, 19D55
Keywords: Jacobi–Zariski, Hochschild homology, cyclic homology
@article{HHA_2019_21_2_a15,
     author = {Atabey Kaygun},
     title = {Erratum to {{\textquotedblleft}Jacobi{\textendash}Zariski} exact sequence for {Hochschild} homology and cyclic (co)homology{\textquotedblright}},
     journal = {Homology, homotopy, and applications},
     pages = {301--303},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2019},
     doi = {10.4310/HHA.2019.v21.n2.a16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n2.a16/}
}
TY  - JOUR
AU  - Atabey Kaygun
TI  - Erratum to “Jacobi–Zariski exact sequence for Hochschild homology and cyclic (co)homology”
JO  - Homology, homotopy, and applications
PY  - 2019
SP  - 301
EP  - 303
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n2.a16/
DO  - 10.4310/HHA.2019.v21.n2.a16
LA  - en
ID  - HHA_2019_21_2_a15
ER  - 
%0 Journal Article
%A Atabey Kaygun
%T Erratum to “Jacobi–Zariski exact sequence for Hochschild homology and cyclic (co)homology”
%J Homology, homotopy, and applications
%D 2019
%P 301-303
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n2.a16/
%R 10.4310/HHA.2019.v21.n2.a16
%G en
%F HHA_2019_21_2_a15
Atabey Kaygun. Erratum to “Jacobi–Zariski exact sequence for Hochschild homology and cyclic (co)homology”. Homology, homotopy, and applications, Tome 21 (2019) no. 2, pp. 301-303. doi : 10.4310/HHA.2019.v21.n2.a16. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n2.a16/

Cité par Sources :