Global model structures for $\ast$-modules
Homology, homotopy, and applications, Tome 21 (2019) no. 2, pp. 213-230.

Voir la notice de l'article provenant de la source International Press of Boston

We extend Schwede’s work on the unstable global homotopy theory of orthogonal spaces and $\mathcal{L}$-spaces to the category of $\ast$-modules (i.e., unstable S-modules). We prove a theorem which transports model structures and their properties from $\mathcal{L}$-spaces to $\ast$-modules and show that the resulting global model structure for $\ast$-modules is monoidally Quillen equivalent to that of orthogonal spaces. As a consequence, there are induced Quillen equivalences between the associated model categories of monoids, which identify equivalent models for the global homotopy theory of $A_\infty$-spaces.
DOI : 10.4310/HHA.2019.v21.n2.a12
Classification : 18G55, 55P91
Keywords: global homotopy theory, equivariant homotopy theory, model category, orthogonal space, $\ast$-module
@article{HHA_2019_21_2_a11,
     author = {Benjamin B\"ohme},
     title = {Global model structures for $\ast$-modules},
     journal = {Homology, homotopy, and applications},
     pages = {213--230},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2019},
     doi = {10.4310/HHA.2019.v21.n2.a12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n2.a12/}
}
TY  - JOUR
AU  - Benjamin Böhme
TI  - Global model structures for $\ast$-modules
JO  - Homology, homotopy, and applications
PY  - 2019
SP  - 213
EP  - 230
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n2.a12/
DO  - 10.4310/HHA.2019.v21.n2.a12
LA  - en
ID  - HHA_2019_21_2_a11
ER  - 
%0 Journal Article
%A Benjamin Böhme
%T Global model structures for $\ast$-modules
%J Homology, homotopy, and applications
%D 2019
%P 213-230
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n2.a12/
%R 10.4310/HHA.2019.v21.n2.a12
%G en
%F HHA_2019_21_2_a11
Benjamin Böhme. Global model structures for $\ast$-modules. Homology, homotopy, and applications, Tome 21 (2019) no. 2, pp. 213-230. doi : 10.4310/HHA.2019.v21.n2.a12. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n2.a12/

Cité par Sources :