Preprojective analogue of the cone construction
Homology, homotopy, and applications, Tome 21 (2019) no. 2, pp. 171-198.

Voir la notice de l'article provenant de la source International Press of Boston

We formulate a relative, representation theoretic, notion of the algebraic cone construction. This motivates a generalization of the cone corresponding to a preprojective algebra.
DOI : 10.4310/HHA.2019.v21.n2.a10
Classification : 16D90, 18G10, 18G30, 55U35
Keywords: homological algebra, triangulated category, cone, preprojective algebra, derived mapping space
@article{HHA_2019_21_2_a9,
     author = {Benjamin Cooper and Joshua Sussan},
     title = {Preprojective analogue of the cone construction},
     journal = {Homology, homotopy, and applications},
     pages = {171--198},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2019},
     doi = {10.4310/HHA.2019.v21.n2.a10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n2.a10/}
}
TY  - JOUR
AU  - Benjamin Cooper
AU  - Joshua Sussan
TI  - Preprojective analogue of the cone construction
JO  - Homology, homotopy, and applications
PY  - 2019
SP  - 171
EP  - 198
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n2.a10/
DO  - 10.4310/HHA.2019.v21.n2.a10
LA  - en
ID  - HHA_2019_21_2_a9
ER  - 
%0 Journal Article
%A Benjamin Cooper
%A Joshua Sussan
%T Preprojective analogue of the cone construction
%J Homology, homotopy, and applications
%D 2019
%P 171-198
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n2.a10/
%R 10.4310/HHA.2019.v21.n2.a10
%G en
%F HHA_2019_21_2_a9
Benjamin Cooper; Joshua Sussan. Preprojective analogue of the cone construction. Homology, homotopy, and applications, Tome 21 (2019) no. 2, pp. 171-198. doi : 10.4310/HHA.2019.v21.n2.a10. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n2.a10/

Cité par Sources :