Deligne–Beilinson cycle maps for Lichtenbaum cohomology
Homology, homotopy, and applications, Tome 21 (2019) no. 1, pp. 187-212.

Voir la notice de l'article provenant de la source International Press of Boston

We define Deligne–Beilinson cycle maps for Lichtenbaum cohomology of arbitrary complex algebraic varieties and show that the analogues of the Abel–Jacobi theorem and the Lefschetz theorem on $(1, 1)$-cycles hold for any complex algebraic variety if we replace the divisor class group with Voevodsky’s motivic cohomology with compact supports. For more general indices, we study the torsion part of the cycle maps. We also characterize the algebraic part of Griffiths’s intermediate Jacobians by a universal property.
DOI : 10.4310/HHA.2019.v21.n1.a9
Classification : 14C30, 14F42, 19E15
Keywords: étale motivic cohomology, Deligne cohomology, cycle map
@article{HHA_2019_21_1_a8,
     author = {Tohru Kohrita},
     title = {Deligne{\textendash}Beilinson cycle maps for {Lichtenbaum} cohomology},
     journal = {Homology, homotopy, and applications},
     pages = {187--212},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2019},
     doi = {10.4310/HHA.2019.v21.n1.a9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n1.a9/}
}
TY  - JOUR
AU  - Tohru Kohrita
TI  - Deligne–Beilinson cycle maps for Lichtenbaum cohomology
JO  - Homology, homotopy, and applications
PY  - 2019
SP  - 187
EP  - 212
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n1.a9/
DO  - 10.4310/HHA.2019.v21.n1.a9
LA  - en
ID  - HHA_2019_21_1_a8
ER  - 
%0 Journal Article
%A Tohru Kohrita
%T Deligne–Beilinson cycle maps for Lichtenbaum cohomology
%J Homology, homotopy, and applications
%D 2019
%P 187-212
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n1.a9/
%R 10.4310/HHA.2019.v21.n1.a9
%G en
%F HHA_2019_21_1_a8
Tohru Kohrita. Deligne–Beilinson cycle maps for Lichtenbaum cohomology. Homology, homotopy, and applications, Tome 21 (2019) no. 1, pp. 187-212. doi : 10.4310/HHA.2019.v21.n1.a9. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n1.a9/

Cité par Sources :