Manifold calculus adapted for simplicial complexes
Homology, homotopy, and applications, Tome 21 (2019) no. 1, pp. 161-186.

Voir la notice de l'article provenant de la source International Press of Boston

We develop a generalization of Goodwillie–Weiss manifold calculus to the setting of simplicial complexes. We consider functors from the category of open subsets of a fixed simplicial complex into the category of topological spaces and prove that in many cases such a functor can be approximated by a tower of polynomial functors. Applications include the study of configuration spaces and other complements, spaces of immersions with prescribed singularities or embeddings of singular spaces.
DOI : 10.4310/HHA.2019.v21.n1.a8
Classification : 57R40, 57R42, 57R55
Keywords: calculus of functors, simplicial complex, embedding
@article{HHA_2019_21_1_a7,
     author = {Steffen Tillmann},
     title = {Manifold calculus adapted for simplicial complexes},
     journal = {Homology, homotopy, and applications},
     pages = {161--186},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2019},
     doi = {10.4310/HHA.2019.v21.n1.a8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n1.a8/}
}
TY  - JOUR
AU  - Steffen Tillmann
TI  - Manifold calculus adapted for simplicial complexes
JO  - Homology, homotopy, and applications
PY  - 2019
SP  - 161
EP  - 186
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n1.a8/
DO  - 10.4310/HHA.2019.v21.n1.a8
LA  - en
ID  - HHA_2019_21_1_a7
ER  - 
%0 Journal Article
%A Steffen Tillmann
%T Manifold calculus adapted for simplicial complexes
%J Homology, homotopy, and applications
%D 2019
%P 161-186
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n1.a8/
%R 10.4310/HHA.2019.v21.n1.a8
%G en
%F HHA_2019_21_1_a7
Steffen Tillmann. Manifold calculus adapted for simplicial complexes. Homology, homotopy, and applications, Tome 21 (2019) no. 1, pp. 161-186. doi : 10.4310/HHA.2019.v21.n1.a8. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n1.a8/

Cité par Sources :