A note on homotopy categories of FP-injectives
Homology, homotopy, and applications, Tome 21 (2019) no. 1, pp. 95-105.

Voir la notice de l'article provenant de la source International Press of Boston

For a locally finitely presented Grothendieck category $\mathcal{A}$, we consider a certain subcategory of the homotopy category of FP-injectives in $\mathcal{A}$ which we show is compactly generated. In the case where $\mathcal{A}$ is locally coherent, we identify this subcategory with the derived category of FP-injectives in $\mathcal{A}$. Our results are, in a sense, dual to the ones obtained by Neeman on the homotopy category of flat modules. Our proof is based on extending a characterization of the pure acyclic complexes which is due to Emmanouil.
DOI : 10.4310/HHA.2019.v21.n1.a5
Classification : 16E35, 18E30, 18G25
Keywords: FP-injective, purity, locally coherent category, compactly generated triangulated category
@article{HHA_2019_21_1_a4,
     author = {Georgios Dalezios},
     title = {A note on homotopy categories of {FP-injectives}},
     journal = {Homology, homotopy, and applications},
     pages = {95--105},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2019},
     doi = {10.4310/HHA.2019.v21.n1.a5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n1.a5/}
}
TY  - JOUR
AU  - Georgios Dalezios
TI  - A note on homotopy categories of FP-injectives
JO  - Homology, homotopy, and applications
PY  - 2019
SP  - 95
EP  - 105
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n1.a5/
DO  - 10.4310/HHA.2019.v21.n1.a5
LA  - en
ID  - HHA_2019_21_1_a4
ER  - 
%0 Journal Article
%A Georgios Dalezios
%T A note on homotopy categories of FP-injectives
%J Homology, homotopy, and applications
%D 2019
%P 95-105
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n1.a5/
%R 10.4310/HHA.2019.v21.n1.a5
%G en
%F HHA_2019_21_1_a4
Georgios Dalezios. A note on homotopy categories of FP-injectives. Homology, homotopy, and applications, Tome 21 (2019) no. 1, pp. 95-105. doi : 10.4310/HHA.2019.v21.n1.a5. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n1.a5/

Cité par Sources :