An algebraic model for rational naïve-commutative $G$-equivariant ring spectra for $\textrm{finite} \: G$
Homology, homotopy, and applications, Tome 21 (2019) no. 1, pp. 73-93.

Voir la notice de l'article provenant de la source International Press of Boston

Equipping a non-equivariant topological $E_{\infty}$-operad with the trivial $G$-action gives an operad in $G$-spaces. The algebra structure encoded by this operad in $G$-spectra is characterised homotopically by having no non-trivial multiplicative norms. Algebras over this operad are called naïve-commutative ring $G$-spectra. In this paper we let $G$ be a finite group and we show that commutative algebras in the algebraic model for rational $G$-spectra model the rational naïve-commutative ring $G$-spectra. In other words, a rational naïve-commutative ring $G$-spectrum is given in the algebraic model by specifying a $\mathbb{Q} [W_G (H)]$-differential graded algebra for each conjugacy class of subgroups $H$ of $G$. Here $W_G (H) = N_G (H)/H$ is the Weyl group of $H$ in $G$.
DOI : 10.4310/HHA.2019.v21.n1.a4
Classification : 55N91, 55P42, 55P60
Keywords: rational equivariant spectrum, commutative equivariant ring spectrum, left Bousfield localisation, model category, algebraic model
@article{HHA_2019_21_1_a3,
     author = {Barnes David and J.P.C. Greenlees and Magdalena K\c{e}dziorek},
     title = {An algebraic model for rational na{\"\i}ve-commutative $G$-equivariant ring spectra for $\textrm{finite} \: G$},
     journal = {Homology, homotopy, and applications},
     pages = {73--93},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2019},
     doi = {10.4310/HHA.2019.v21.n1.a4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n1.a4/}
}
TY  - JOUR
AU  - Barnes David
AU  - J.P.C. Greenlees
AU  - Magdalena Kȩdziorek
TI  - An algebraic model for rational naïve-commutative $G$-equivariant ring spectra for $\textrm{finite} \: G$
JO  - Homology, homotopy, and applications
PY  - 2019
SP  - 73
EP  - 93
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n1.a4/
DO  - 10.4310/HHA.2019.v21.n1.a4
LA  - en
ID  - HHA_2019_21_1_a3
ER  - 
%0 Journal Article
%A Barnes David
%A J.P.C. Greenlees
%A Magdalena Kȩdziorek
%T An algebraic model for rational naïve-commutative $G$-equivariant ring spectra for $\textrm{finite} \: G$
%J Homology, homotopy, and applications
%D 2019
%P 73-93
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n1.a4/
%R 10.4310/HHA.2019.v21.n1.a4
%G en
%F HHA_2019_21_1_a3
Barnes David; J.P.C. Greenlees; Magdalena Kȩdziorek. An algebraic model for rational naïve-commutative $G$-equivariant ring spectra for $\textrm{finite} \: G$. Homology, homotopy, and applications, Tome 21 (2019) no. 1, pp. 73-93. doi : 10.4310/HHA.2019.v21.n1.a4. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n1.a4/

Cité par Sources :