A canonical lift of Frobenius in Morava $E$-theory
Homology, homotopy, and applications, Tome 21 (2019) no. 1, pp. 341-350.

Voir la notice de l'article provenant de la source International Press of Boston

We prove that the $p$th Hecke operator on the Morava $E$-cohomology of a space is congruent to the Frobenius $\mathrm{mod} \: p$. This is a generalization of the fact that the $p$th Adams operation on the complex $K$-theory of a space is congruent to the Frobenius $\mathrm{mod} \: p$. The proof implies that the $p$th Hecke operator may be used to test Rezk’s congruence criterion.
DOI : 10.4310/HHA.2019.v21.n1.a16
Classification : 55N20
Keywords: Morava $E$-theory, Frobenius, Hecke operator
@article{HHA_2019_21_1_a15,
     author = {Nathaniel Stapleton},
     title = {A canonical lift of {Frobenius} in {Morava} $E$-theory},
     journal = {Homology, homotopy, and applications},
     pages = {341--350},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2019},
     doi = {10.4310/HHA.2019.v21.n1.a16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n1.a16/}
}
TY  - JOUR
AU  - Nathaniel Stapleton
TI  - A canonical lift of Frobenius in Morava $E$-theory
JO  - Homology, homotopy, and applications
PY  - 2019
SP  - 341
EP  - 350
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n1.a16/
DO  - 10.4310/HHA.2019.v21.n1.a16
LA  - en
ID  - HHA_2019_21_1_a15
ER  - 
%0 Journal Article
%A Nathaniel Stapleton
%T A canonical lift of Frobenius in Morava $E$-theory
%J Homology, homotopy, and applications
%D 2019
%P 341-350
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n1.a16/
%R 10.4310/HHA.2019.v21.n1.a16
%G en
%F HHA_2019_21_1_a15
Nathaniel Stapleton. A canonical lift of Frobenius in Morava $E$-theory. Homology, homotopy, and applications, Tome 21 (2019) no. 1, pp. 341-350. doi : 10.4310/HHA.2019.v21.n1.a16. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n1.a16/

Cité par Sources :