Enriched model categories in equivariant contexts
Homology, homotopy, and applications, Tome 21 (2019) no. 1, pp. 213-246.

Voir la notice de l'article provenant de la source International Press of Boston

We give a general framework of equivariant model category theory. Our groups $G$, called Hopf groups, are suitably defined group objects in any well-behaved symmetric monoidal category $\mathscr{V}$. For any $\mathscr{V}$, a discrete group $G$ gives a Hopf group, denoted $I[G]$. When $\mathscr{V}$ is cartesian monoidal, the Hopf groups are just the group objects in $\mathscr{V}$. When $\mathscr{V}$ is the category of modules over a commutative ring $R, I[G]$ is the group ring $R[G]$ and the general Hopf groups are the cocommutative Hopf algebras over $R$. We show how all of the usual constructs of equivariant homotopy theory, both categorical and model theoretic, generalize to Hopf groups for any $\mathscr{V}$. This opens up some quite elementary unexplored mathematical territory, while systematizing more familiar terrain.
DOI : 10.4310/HHA.2019.v21.n1.a10
Classification : 55P91, 55U35
Keywords: enriched model category, equivariant model category, Hopf group
@article{HHA_2019_21_1_a9,
     author = {Bertrand Guillou and J.P. May and Jonathan Rubin},
     title = {Enriched model categories in equivariant contexts},
     journal = {Homology, homotopy, and applications},
     pages = {213--246},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2019},
     doi = {10.4310/HHA.2019.v21.n1.a10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n1.a10/}
}
TY  - JOUR
AU  - Bertrand Guillou
AU  - J.P. May
AU  - Jonathan Rubin
TI  - Enriched model categories in equivariant contexts
JO  - Homology, homotopy, and applications
PY  - 2019
SP  - 213
EP  - 246
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n1.a10/
DO  - 10.4310/HHA.2019.v21.n1.a10
LA  - en
ID  - HHA_2019_21_1_a9
ER  - 
%0 Journal Article
%A Bertrand Guillou
%A J.P. May
%A Jonathan Rubin
%T Enriched model categories in equivariant contexts
%J Homology, homotopy, and applications
%D 2019
%P 213-246
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n1.a10/
%R 10.4310/HHA.2019.v21.n1.a10
%G en
%F HHA_2019_21_1_a9
Bertrand Guillou; J.P. May; Jonathan Rubin. Enriched model categories in equivariant contexts. Homology, homotopy, and applications, Tome 21 (2019) no. 1, pp. 213-246. doi : 10.4310/HHA.2019.v21.n1.a10. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2019.v21.n1.a10/

Cité par Sources :