Partial Euler characteristic, normal generations and the stable $D(2)$ problem
Homology, homotopy, and applications, Tome 20 (2018) no. 2, pp. 105-114.

Voir la notice de l'article provenant de la source International Press of Boston

We study the interplay among Wall’s $D(2)$ problem, the normal generation conjecture (the Wiegold Conjecture) of perfect groups and Swan’s problem on partial Euler characteristic and deficiency of groups. In particular, for a $3$-dimensional complex $X$ of cohomological dimension $2$ with finite fundamental group, assuming the Wiegold conjecture holds, we prove that $X$ is homotopy equivalent to a finite $2$-complex after wedging a copy of sphere $S^2$.
DOI : 10.4310/HHA.2018.v20.n2.a6
Classification : 57M05, 57M20
Keywords: $D(2)$ problem, cohomological dimensions, Quillen’s plus construction
@article{HHA_2018_20_2_a5,
     author = {Feng Ji and Shengkui Ye},
     title = {Partial {Euler} characteristic, normal generations and the stable $D(2)$ problem},
     journal = {Homology, homotopy, and applications},
     pages = {105--114},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2018},
     doi = {10.4310/HHA.2018.v20.n2.a6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n2.a6/}
}
TY  - JOUR
AU  - Feng Ji
AU  - Shengkui Ye
TI  - Partial Euler characteristic, normal generations and the stable $D(2)$ problem
JO  - Homology, homotopy, and applications
PY  - 2018
SP  - 105
EP  - 114
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n2.a6/
DO  - 10.4310/HHA.2018.v20.n2.a6
LA  - en
ID  - HHA_2018_20_2_a5
ER  - 
%0 Journal Article
%A Feng Ji
%A Shengkui Ye
%T Partial Euler characteristic, normal generations and the stable $D(2)$ problem
%J Homology, homotopy, and applications
%D 2018
%P 105-114
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n2.a6/
%R 10.4310/HHA.2018.v20.n2.a6
%G en
%F HHA_2018_20_2_a5
Feng Ji; Shengkui Ye. Partial Euler characteristic, normal generations and the stable $D(2)$ problem. Homology, homotopy, and applications, Tome 20 (2018) no. 2, pp. 105-114. doi : 10.4310/HHA.2018.v20.n2.a6. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n2.a6/

Cité par Sources :