Generalized Steenrod homology theories are identical with partially continuous homology theories
Homology, homotopy, and applications, Tome 20 (2018) no. 2, pp. 61-77.

Voir la notice de l'article provenant de la source International Press of Boston

It is shown that generalized Steenrod homology theories are identical with partially continuous homology theories which are characterized by a short exact $\underleftarrow{\mathrm{lim}}^{1}$-sequence.
DOI : 10.4310/HHA.2018.v20.n2.a4
Classification : 55N20, 55N40, 55P55
Keywords: Steenrod homology theory, partially continuous homology theory
@article{HHA_2018_20_2_a3,
     author = {Peter Mrozik},
     title = {Generalized {Steenrod} homology theories are identical with partially continuous homology theories},
     journal = {Homology, homotopy, and applications},
     pages = {61--77},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2018},
     doi = {10.4310/HHA.2018.v20.n2.a4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n2.a4/}
}
TY  - JOUR
AU  - Peter Mrozik
TI  - Generalized Steenrod homology theories are identical with partially continuous homology theories
JO  - Homology, homotopy, and applications
PY  - 2018
SP  - 61
EP  - 77
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n2.a4/
DO  - 10.4310/HHA.2018.v20.n2.a4
LA  - en
ID  - HHA_2018_20_2_a3
ER  - 
%0 Journal Article
%A Peter Mrozik
%T Generalized Steenrod homology theories are identical with partially continuous homology theories
%J Homology, homotopy, and applications
%D 2018
%P 61-77
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n2.a4/
%R 10.4310/HHA.2018.v20.n2.a4
%G en
%F HHA_2018_20_2_a3
Peter Mrozik. Generalized Steenrod homology theories are identical with partially continuous homology theories. Homology, homotopy, and applications, Tome 20 (2018) no. 2, pp. 61-77. doi : 10.4310/HHA.2018.v20.n2.a4. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n2.a4/

Cité par Sources :