$L$-homology on ball complexes and products
Homology, homotopy, and applications, Tome 20 (2018) no. 2, pp. 11-40.

Voir la notice de l'article provenant de la source International Press of Boston

We construct homology theories with coefficients in $L$-spectra on the category of ball complexes and we define products in this setting. We also obtain signatures of geometric situations in these homology groups and prove product formulae which we hope will clarify products used in the theory of the total surgery obstruction.
DOI : 10.4310/HHA.2018.v20.n2.a2
Classification : 57R65
Keywords: $L$-theory, surgery theory, ball complex
@article{HHA_2018_20_2_a1,
     author = {Spiros Adams-Florou and Tibor Macko},
     title = {$L$-homology on ball complexes and products},
     journal = {Homology, homotopy, and applications},
     pages = {11--40},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2018},
     doi = {10.4310/HHA.2018.v20.n2.a2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n2.a2/}
}
TY  - JOUR
AU  - Spiros Adams-Florou
AU  - Tibor Macko
TI  - $L$-homology on ball complexes and products
JO  - Homology, homotopy, and applications
PY  - 2018
SP  - 11
EP  - 40
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n2.a2/
DO  - 10.4310/HHA.2018.v20.n2.a2
LA  - en
ID  - HHA_2018_20_2_a1
ER  - 
%0 Journal Article
%A Spiros Adams-Florou
%A Tibor Macko
%T $L$-homology on ball complexes and products
%J Homology, homotopy, and applications
%D 2018
%P 11-40
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n2.a2/
%R 10.4310/HHA.2018.v20.n2.a2
%G en
%F HHA_2018_20_2_a1
Spiros Adams-Florou; Tibor Macko. $L$-homology on ball complexes and products. Homology, homotopy, and applications, Tome 20 (2018) no. 2, pp. 11-40. doi : 10.4310/HHA.2018.v20.n2.a2. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n2.a2/

Cité par Sources :