On factorizations of graphical maps
Homology, homotopy, and applications, Tome 20 (2018) no. 2, pp. 217-238.

Voir la notice de l'article provenant de la source International Press of Boston

We study the categories governing infinity (wheeled) properads. The graphical category, which was already known to be generalized Reedy, is, in fact, an Eilenberg–Zilber category. A minor alteration to the definition of the wheeled graphical category allows us to show that it is a generalized Reedy category. Finally, we present model structures for Segal properads and Segal wheeled properads.
DOI : 10.4310/HHA.2018.v20.n2.a11
Classification : 18D50, 18G30, 18G55, 55P48, 55U35
Keywords: Reedy category, graphical set, dendroidal set, Quillen model structure, Eilenberg–Zilber category, properad, wheeled properad
@article{HHA_2018_20_2_a10,
     author = {Philip Hackney and Marcy Robertson and Donald Yau},
     title = {On factorizations of graphical maps},
     journal = {Homology, homotopy, and applications},
     pages = {217--238},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2018},
     doi = {10.4310/HHA.2018.v20.n2.a11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n2.a11/}
}
TY  - JOUR
AU  - Philip Hackney
AU  - Marcy Robertson
AU  - Donald Yau
TI  - On factorizations of graphical maps
JO  - Homology, homotopy, and applications
PY  - 2018
SP  - 217
EP  - 238
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n2.a11/
DO  - 10.4310/HHA.2018.v20.n2.a11
LA  - en
ID  - HHA_2018_20_2_a10
ER  - 
%0 Journal Article
%A Philip Hackney
%A Marcy Robertson
%A Donald Yau
%T On factorizations of graphical maps
%J Homology, homotopy, and applications
%D 2018
%P 217-238
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n2.a11/
%R 10.4310/HHA.2018.v20.n2.a11
%G en
%F HHA_2018_20_2_a10
Philip Hackney; Marcy Robertson; Donald Yau. On factorizations of graphical maps. Homology, homotopy, and applications, Tome 20 (2018) no. 2, pp. 217-238. doi : 10.4310/HHA.2018.v20.n2.a11. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n2.a11/

Cité par Sources :