Commutative nearly absolute valued algebras with square roots
Homology, homotopy, and applications, Tome 20 (2018) no. 2, pp. 207-216.

Voir la notice de l'article provenant de la source International Press of Boston

Let $A$ be a commutative nearly absolute valued algebra. In this note we prove that all elements of $A$ have square roots if and only if $A$ is a two-dimensional real division algebra. This can be viewed as a generalization of a well-known theorem of Hopf.
DOI : 10.4310/HHA.2018.v20.n2.a10
Classification : 17A35, 46H70, 55N10
Keywords: division algebra, singular homology group, commutative algebra, square root, fundamental group
@article{HHA_2018_20_2_a9,
     author = {Jos\'e Antonio Cuenca Mira and Francisca Miguel Garc{\'\i}a},
     title = {Commutative nearly absolute valued algebras with square roots},
     journal = {Homology, homotopy, and applications},
     pages = {207--216},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2018},
     doi = {10.4310/HHA.2018.v20.n2.a10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n2.a10/}
}
TY  - JOUR
AU  - José Antonio Cuenca Mira
AU  - Francisca Miguel García
TI  - Commutative nearly absolute valued algebras with square roots
JO  - Homology, homotopy, and applications
PY  - 2018
SP  - 207
EP  - 216
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n2.a10/
DO  - 10.4310/HHA.2018.v20.n2.a10
LA  - en
ID  - HHA_2018_20_2_a9
ER  - 
%0 Journal Article
%A José Antonio Cuenca Mira
%A Francisca Miguel García
%T Commutative nearly absolute valued algebras with square roots
%J Homology, homotopy, and applications
%D 2018
%P 207-216
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n2.a10/
%R 10.4310/HHA.2018.v20.n2.a10
%G en
%F HHA_2018_20_2_a9
José Antonio Cuenca Mira; Francisca Miguel García. Commutative nearly absolute valued algebras with square roots. Homology, homotopy, and applications, Tome 20 (2018) no. 2, pp. 207-216. doi : 10.4310/HHA.2018.v20.n2.a10. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n2.a10/

Cité par Sources :