A homotopy decomposition of the fibre of the squaring map on $\Omega^3 S^{17}$
Homology, homotopy, and applications, Tome 20 (2018) no. 1, pp. 141-154.

Voir la notice de l'article provenant de la source International Press of Boston

We use Richter’s $2$-primary proof of Gray’s conjecture to give a homotopy decomposition of the fibre $\Omega^3 S^{17} \lbrace 2 \rbrace$ of the $H$-space squaring map on the triple loop space of the $17$-sphere. This induces a splitting of the $\mod 2$ homotopy groups $\pi_{*} (S^{17}; \mathbb{Z} / 2 \mathbb{Z})$ in terms of the integral homotopy groups of the fibre of the double suspension $E^2 : S^{2n-1} \to \Omega^2 S^{2n+1}$ and refines a result of Cohen and Selick, who gave similar decompositions for $S^5$ and $S^9$. We relate these decompositions to various Whitehead products in the homotopy groups of $\mod 2$ Moore spaces and Stiefel manifolds to show that the Whitehead square $[ i_{2n}, i_{2n} ]$ of the inclusion of the bottom cell of the Moore space $P^{2n+1} (2)$ is divisible by $2$ if and only if $2n = 2, 4, 8 \: \mathrm{or} \: 16$.
DOI : 10.4310/HHA.2018.v20.n1.a9
Classification : 55P10, 55P35, 55Q15
Keywords: loop space decomposition, Moore space, Whitehead product
@article{HHA_2018_20_1_a8,
     author = {Steven Amelotte},
     title = {A homotopy decomposition of the fibre of the squaring map on $\Omega^3 S^{17}$},
     journal = {Homology, homotopy, and applications},
     pages = {141--154},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2018},
     doi = {10.4310/HHA.2018.v20.n1.a9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n1.a9/}
}
TY  - JOUR
AU  - Steven Amelotte
TI  - A homotopy decomposition of the fibre of the squaring map on $\Omega^3 S^{17}$
JO  - Homology, homotopy, and applications
PY  - 2018
SP  - 141
EP  - 154
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n1.a9/
DO  - 10.4310/HHA.2018.v20.n1.a9
LA  - en
ID  - HHA_2018_20_1_a8
ER  - 
%0 Journal Article
%A Steven Amelotte
%T A homotopy decomposition of the fibre of the squaring map on $\Omega^3 S^{17}$
%J Homology, homotopy, and applications
%D 2018
%P 141-154
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n1.a9/
%R 10.4310/HHA.2018.v20.n1.a9
%G en
%F HHA_2018_20_1_a8
Steven Amelotte. A homotopy decomposition of the fibre of the squaring map on $\Omega^3 S^{17}$. Homology, homotopy, and applications, Tome 20 (2018) no. 1, pp. 141-154. doi : 10.4310/HHA.2018.v20.n1.a9. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n1.a9/

Cité par Sources :