Using torsion theory to compute the algebraic structure of Hochschild (co)homology
Homology, homotopy, and applications, Tome 20 (2018) no. 1, pp. 117-139.

Voir la notice de l'article provenant de la source International Press of Boston

The aim of this article is to provide explicit formulas for the cup product on the Hochschild cohomology of any nonnegatively graded connected algebra $A$ and for the cap products on the Hochschild homology of $A$ with coefficients in any graded bimodule $M$ at the level of the complexes $\operatorname{Hom}_{A^{\mathrm{e}}}(P_{\bullet},A)$ and $M \otimes_{A^{\mathrm{e}}} P_{\bullet}$, resp., where $P_{\bullet}$ is a minimal projective resolution of the $A$-bimodule $A$, based on the $A_{\infty}$-algebra structure of $\mathcal{E}xt^{\bullet}_{A}(k,k)$. We remark that we do not (need to) construct any comparison map between $P_{\bullet}$ and the Hochschild resolution of $A$, or any lift $\Delta \colon P \rightarrow P \otimes_{A} P$ of the identity of $A$. The main tools we use come from torsion theory of $A_{\infty}$-algebras and of their $A_{\infty}$-bimodules.
DOI : 10.4310/HHA.2018.v20.n1.a8
Classification : 16E40, 16E45, 16S37, 16W50, 18G55
Keywords: Koszul algebra, Yoneda algebra, homological algebra, dg algebra, $A_{\infty}$-algebra
@article{HHA_2018_20_1_a7,
     author = {Estanislao Herscovich},
     title = {Using torsion theory to compute the algebraic structure of {Hochschild} (co)homology},
     journal = {Homology, homotopy, and applications},
     pages = {117--139},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2018},
     doi = {10.4310/HHA.2018.v20.n1.a8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n1.a8/}
}
TY  - JOUR
AU  - Estanislao Herscovich
TI  - Using torsion theory to compute the algebraic structure of Hochschild (co)homology
JO  - Homology, homotopy, and applications
PY  - 2018
SP  - 117
EP  - 139
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n1.a8/
DO  - 10.4310/HHA.2018.v20.n1.a8
LA  - en
ID  - HHA_2018_20_1_a7
ER  - 
%0 Journal Article
%A Estanislao Herscovich
%T Using torsion theory to compute the algebraic structure of Hochschild (co)homology
%J Homology, homotopy, and applications
%D 2018
%P 117-139
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n1.a8/
%R 10.4310/HHA.2018.v20.n1.a8
%G en
%F HHA_2018_20_1_a7
Estanislao Herscovich. Using torsion theory to compute the algebraic structure of Hochschild (co)homology. Homology, homotopy, and applications, Tome 20 (2018) no. 1, pp. 117-139. doi : 10.4310/HHA.2018.v20.n1.a8. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n1.a8/

Cité par Sources :