On the Borel transgression in the fibration $G \to G/T$
Homology, homotopy, and applications, Tome 20 (2018) no. 1, pp. 79-86.

Voir la notice de l'article provenant de la source International Press of Boston

Let $G$ be a semisimple Lie group with a maximal torus $T$. We present an explicit formula for the Borel transgression $\tau : H^1 (T) \to H^2 (G/T)$ of the fibration $G \to G/T$. This formula corrects an error in the paper [9], and has been applied to construct the integral cohomology rings of compact Lie groups in the sequel works [4, 6].
DOI : 10.4310/HHA.2018.v20.n1.a6
Classification : 55T10, 57T10
Keywords: Lie group, cohomology, Leray-Serre spectral sequence
@article{HHA_2018_20_1_a5,
     author = {Haibao Duan},
     title = {On the {Borel} transgression in the fibration $G \to G/T$},
     journal = {Homology, homotopy, and applications},
     pages = {79--86},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2018},
     doi = {10.4310/HHA.2018.v20.n1.a6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n1.a6/}
}
TY  - JOUR
AU  - Haibao Duan
TI  - On the Borel transgression in the fibration $G \to G/T$
JO  - Homology, homotopy, and applications
PY  - 2018
SP  - 79
EP  - 86
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n1.a6/
DO  - 10.4310/HHA.2018.v20.n1.a6
LA  - en
ID  - HHA_2018_20_1_a5
ER  - 
%0 Journal Article
%A Haibao Duan
%T On the Borel transgression in the fibration $G \to G/T$
%J Homology, homotopy, and applications
%D 2018
%P 79-86
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n1.a6/
%R 10.4310/HHA.2018.v20.n1.a6
%G en
%F HHA_2018_20_1_a5
Haibao Duan. On the Borel transgression in the fibration $G \to G/T$. Homology, homotopy, and applications, Tome 20 (2018) no. 1, pp. 79-86. doi : 10.4310/HHA.2018.v20.n1.a6. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n1.a6/

Cité par Sources :