On a base change conjecture for higher zero-cycles
Homology, homotopy, and applications, Tome 20 (2018) no. 1, pp. 59-68.

Voir la notice de l'article provenant de la source International Press of Boston

We show the surjectivity of a restriction map for higher $(0, 1)$-cycles for a smooth projective scheme over an excellent henselian discrete valuation ring. This gives evidence for a conjecture by Kerz, Esnault and Wittenberg saying that base change holds for such schemes in general for motivic cohomology in degrees $(i, d)$ for fixed $d$ being the relative dimension over the base. Furthermore, the restriction map we study is related to a finiteness conjecture for the $n$-torsion of $\mathrm{CH}_0 (X)$, where $X$ is a variety over a $p$-adic field.
DOI : 10.4310/HHA.2018.v20.n1.a4
Classification : 14C25
Keywords: higher zero-cycles, restriction map, $n$-torsion
@article{HHA_2018_20_1_a3,
     author = {Morten L\"uders},
     title = {On a base change conjecture for higher zero-cycles},
     journal = {Homology, homotopy, and applications},
     pages = {59--68},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2018},
     doi = {10.4310/HHA.2018.v20.n1.a4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n1.a4/}
}
TY  - JOUR
AU  - Morten Lüders
TI  - On a base change conjecture for higher zero-cycles
JO  - Homology, homotopy, and applications
PY  - 2018
SP  - 59
EP  - 68
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n1.a4/
DO  - 10.4310/HHA.2018.v20.n1.a4
LA  - en
ID  - HHA_2018_20_1_a3
ER  - 
%0 Journal Article
%A Morten Lüders
%T On a base change conjecture for higher zero-cycles
%J Homology, homotopy, and applications
%D 2018
%P 59-68
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n1.a4/
%R 10.4310/HHA.2018.v20.n1.a4
%G en
%F HHA_2018_20_1_a3
Morten Lüders. On a base change conjecture for higher zero-cycles. Homology, homotopy, and applications, Tome 20 (2018) no. 1, pp. 59-68. doi : 10.4310/HHA.2018.v20.n1.a4. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n1.a4/

Cité par Sources :