Third cohomology and fusion categories
Homology, homotopy, and applications, Tome 20 (2018) no. 1, pp. 275-302.

Voir la notice de l'article provenant de la source International Press of Boston

It was observed recently that for a fixed finite group $G$, the set of all Drinfeld centres of $G$ twisted by 3-cocycles form a group, the so-called group of modular extensions (of the representation category of $G$), which is isomorphic to the third cohomology group of $G$.We show that for an abelian $G$, pointed twisted Drinfeld centres of $G$ form a subgroup of the group of modular extensions.We identify this subgroup with a group of quadratic extensions containing $G$ as a Lagrangian subgroup, the so-called group of Lagrangian extensions of $G$. We compute the group of Lagrangian extensions, thereby providing an interpretation of the internal structure of the third cohomology group of an abelian $G$ in terms of fusion categories. Our computations also allow us to describe associators of Lagrangian algebra in pointed braided fusion categories.
DOI : 10.4310/HHA.2018.v20.n1.a17
Classification : 18D10, 18G15
Keywords: group cohomology, fusion category, finite group theory
@article{HHA_2018_20_1_a16,
     author = {Alexei Davydov and Darren A. Simmons},
     title = {Third cohomology and fusion categories},
     journal = {Homology, homotopy, and applications},
     pages = {275--302},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2018},
     doi = {10.4310/HHA.2018.v20.n1.a17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n1.a17/}
}
TY  - JOUR
AU  - Alexei Davydov
AU  - Darren A. Simmons
TI  - Third cohomology and fusion categories
JO  - Homology, homotopy, and applications
PY  - 2018
SP  - 275
EP  - 302
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n1.a17/
DO  - 10.4310/HHA.2018.v20.n1.a17
LA  - en
ID  - HHA_2018_20_1_a16
ER  - 
%0 Journal Article
%A Alexei Davydov
%A Darren A. Simmons
%T Third cohomology and fusion categories
%J Homology, homotopy, and applications
%D 2018
%P 275-302
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n1.a17/
%R 10.4310/HHA.2018.v20.n1.a17
%G en
%F HHA_2018_20_1_a16
Alexei Davydov; Darren A. Simmons. Third cohomology and fusion categories. Homology, homotopy, and applications, Tome 20 (2018) no. 1, pp. 275-302. doi : 10.4310/HHA.2018.v20.n1.a17. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n1.a17/

Cité par Sources :