Tensoring with the Frobenius endomorphism
Homology, homotopy, and applications, Tome 20 (2018) no. 1, pp. 251-257.

Voir la notice de l'article provenant de la source International Press of Boston

Let $R$ be a commutative Noetherian Cohen–Macaulay local ring that has positive dimension and prime characteristic. Li proved that the tensor product of a finitely generated non-free $R$-module $M$ with the Frobenius endomorphism ${}^{\varphi^n} \! R$ is not maximal Cohen–Macaulay provided that $M$ has rank and $n \gg 0$.We replace the rank hypothesis with the weaker assumption that $M$ is locally free on the minimal prime ideals of $R$. As a consequence, we obtain, if $R$ is a one-dimensional non-regular complete reduced local ring that has a perfect residue field and prime characteristic, then ${}^{\varphi^n} \! R \otimes_R {}^{\varphi^n} \! R $ has torsion for all $n \gg 0$. This property of the Frobenius endomorphism came as a surprise to us since, over such rings $R$, there exist non-free modules $M$ such that $M \otimes_R M$ is torsion-free.
DOI : 10.4310/HHA.2018.v20.n1.a15
Classification : 13A35, 13D07, 13H10
Keywords: Frobenius endomorphism, tensor product of modules, rank and torsion
@article{HHA_2018_20_1_a14,
     author = {Olgur Celikbas and Arash Sadeghi and Yongwei Yao},
     title = {Tensoring with the {Frobenius} endomorphism},
     journal = {Homology, homotopy, and applications},
     pages = {251--257},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2018},
     doi = {10.4310/HHA.2018.v20.n1.a15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n1.a15/}
}
TY  - JOUR
AU  - Olgur Celikbas
AU  - Arash Sadeghi
AU  - Yongwei Yao
TI  - Tensoring with the Frobenius endomorphism
JO  - Homology, homotopy, and applications
PY  - 2018
SP  - 251
EP  - 257
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n1.a15/
DO  - 10.4310/HHA.2018.v20.n1.a15
LA  - en
ID  - HHA_2018_20_1_a14
ER  - 
%0 Journal Article
%A Olgur Celikbas
%A Arash Sadeghi
%A Yongwei Yao
%T Tensoring with the Frobenius endomorphism
%J Homology, homotopy, and applications
%D 2018
%P 251-257
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n1.a15/
%R 10.4310/HHA.2018.v20.n1.a15
%G en
%F HHA_2018_20_1_a14
Olgur Celikbas; Arash Sadeghi; Yongwei Yao. Tensoring with the Frobenius endomorphism. Homology, homotopy, and applications, Tome 20 (2018) no. 1, pp. 251-257. doi : 10.4310/HHA.2018.v20.n1.a15. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n1.a15/

Cité par Sources :