Excellent rings in transchromatic homotopy theory
Homology, homotopy, and applications, Tome 20 (2018) no. 1, pp. 209-218.

Voir la notice de l'article provenant de la source International Press of Boston

The purpose of this note is to verify that several basic rings appearing in transchromatic homotopy theory are Noetherian excellent normal domains and thus amenable to standard techniques from commutative algebra. In particular, we show that the coefficients of iterated localizations of Morava $E$-theory at the Morava $K$-theories are normal domains and also that the coefficients in the transchromatic character map for a fixed group form a normal domain.
DOI : 10.4310/HHA.2018.v20.n1.a12
Classification : 13F40, 55N20
Keywords: Morava $E$-theory, Lubin–Tate theory, chromatic homotopy theory, excellent ring
@article{HHA_2018_20_1_a11,
     author = {Tobias Barthel and Nathaniel Stapleton},
     title = {Excellent rings in transchromatic homotopy theory},
     journal = {Homology, homotopy, and applications},
     pages = {209--218},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2018},
     doi = {10.4310/HHA.2018.v20.n1.a12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n1.a12/}
}
TY  - JOUR
AU  - Tobias Barthel
AU  - Nathaniel Stapleton
TI  - Excellent rings in transchromatic homotopy theory
JO  - Homology, homotopy, and applications
PY  - 2018
SP  - 209
EP  - 218
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n1.a12/
DO  - 10.4310/HHA.2018.v20.n1.a12
LA  - en
ID  - HHA_2018_20_1_a11
ER  - 
%0 Journal Article
%A Tobias Barthel
%A Nathaniel Stapleton
%T Excellent rings in transchromatic homotopy theory
%J Homology, homotopy, and applications
%D 2018
%P 209-218
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n1.a12/
%R 10.4310/HHA.2018.v20.n1.a12
%G en
%F HHA_2018_20_1_a11
Tobias Barthel; Nathaniel Stapleton. Excellent rings in transchromatic homotopy theory. Homology, homotopy, and applications, Tome 20 (2018) no. 1, pp. 209-218. doi : 10.4310/HHA.2018.v20.n1.a12. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n1.a12/

Cité par Sources :