$E_{\infty}$ obstruction theory
Homology, homotopy, and applications, Tome 20 (2018) no. 1, pp. 155-184.

Voir la notice de l'article provenant de la source International Press of Boston

The space of $E_{\infty}$ structures on a simplicial operad $\mathcal{C}$ is the limit of a tower of fibrations, so its homotopy is the abutment of a Bousfield–Kan fringed spectral sequence. The spectral sequence begins (under mild restrictions) with the stable cohomotopy of the right $\Gamma$-module $\pi_{*} \mathcal{C}$; the fringe contains an obstruction theory for the existence of $E_{\infty}$ structures on $\mathcal{C}$. This formulation is very flexible: applications extend beyond structures on classical ring spectra to examples in motivic homotopy theory.
DOI : 10.4310/HHA.2018.v20.n1.a10
Classification : 18D50, 55P43, 55P48, 55S35
Keywords: operad, $E_{\infty}$ structure, Bousfield–Kan spectral sequence
@article{HHA_2018_20_1_a9,
     author = {Alan Robinson},
     title = {$E_{\infty}$ obstruction theory},
     journal = {Homology, homotopy, and applications},
     pages = {155--184},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2018},
     doi = {10.4310/HHA.2018.v20.n1.a10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n1.a10/}
}
TY  - JOUR
AU  - Alan Robinson
TI  - $E_{\infty}$ obstruction theory
JO  - Homology, homotopy, and applications
PY  - 2018
SP  - 155
EP  - 184
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n1.a10/
DO  - 10.4310/HHA.2018.v20.n1.a10
LA  - en
ID  - HHA_2018_20_1_a9
ER  - 
%0 Journal Article
%A Alan Robinson
%T $E_{\infty}$ obstruction theory
%J Homology, homotopy, and applications
%D 2018
%P 155-184
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n1.a10/
%R 10.4310/HHA.2018.v20.n1.a10
%G en
%F HHA_2018_20_1_a9
Alan Robinson. $E_{\infty}$ obstruction theory. Homology, homotopy, and applications, Tome 20 (2018) no. 1, pp. 155-184. doi : 10.4310/HHA.2018.v20.n1.a10. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n1.a10/

Cité par Sources :