$K$-theoretic torsors for infinite dimensional vector bundles of locally compact type
Homology, homotopy, and applications, Tome 20 (2018) no. 1, pp. 1-4.

Voir la notice de l'article provenant de la source International Press of Boston

Drinfeld observed that there were apparently two notions of $K$-theory torsor one might expect to associate to a Tate $R$-module, and that these should be equivalent. The purpose of the present note is to explain this equivalence as a direct consequence of the author’s delooping theorem and Drinfeld’s theorem that the first negative $K$-group vanishes Nisnevich locally.
DOI : 10.4310/HHA.2018.v20.n1.a1
Classification : 19E99
Keywords: $K$-theoretic torsor, Tate $R$-module
@article{HHA_2018_20_1_a0,
     author = {Sho Saito},
     title = {$K$-theoretic torsors for infinite dimensional vector bundles of locally compact type},
     journal = {Homology, homotopy, and applications},
     pages = {1--4},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2018},
     doi = {10.4310/HHA.2018.v20.n1.a1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n1.a1/}
}
TY  - JOUR
AU  - Sho Saito
TI  - $K$-theoretic torsors for infinite dimensional vector bundles of locally compact type
JO  - Homology, homotopy, and applications
PY  - 2018
SP  - 1
EP  - 4
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n1.a1/
DO  - 10.4310/HHA.2018.v20.n1.a1
LA  - en
ID  - HHA_2018_20_1_a0
ER  - 
%0 Journal Article
%A Sho Saito
%T $K$-theoretic torsors for infinite dimensional vector bundles of locally compact type
%J Homology, homotopy, and applications
%D 2018
%P 1-4
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n1.a1/
%R 10.4310/HHA.2018.v20.n1.a1
%G en
%F HHA_2018_20_1_a0
Sho Saito. $K$-theoretic torsors for infinite dimensional vector bundles of locally compact type. Homology, homotopy, and applications, Tome 20 (2018) no. 1, pp. 1-4. doi : 10.4310/HHA.2018.v20.n1.a1. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2018.v20.n1.a1/

Cité par Sources :